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Abstract. Monte Carlo Tree Search (MCTS) has been found to be a
weaker player than minimax in some tactical domains, partly due to
its highly selective focus only on the most promising moves. In order
to combine the strategic strength of MCTS and the tactical strength of
minimax, MCTS-minimax hybrids have been introduced in prior work,
embedding shallow minimax searches into the MCTS framework. This
paper continues this line of research by integrating MCTS and minimax
even more tightly into one rollout-based hybrid search algorithm, MCTS-
αβ. The hybrid is able to execute two types of rollouts: MCTS rollouts
and alpha-beta rollouts, i.e. rollouts implementing minimax with alpha-
beta pruning and iterative deepening. During the search, all nodes accu-
mulate both MCTS value estimates as well as alpha-beta value bounds.
The two types of information are combined in a given tree node when-
ever alpha-beta completes a deepening iteration rooted in that node—by
increasing the MCTS value estimates for the best move found by alpha-
beta. A single parameter, the probability of executing MCTS rollouts
vs. alpha-beta rollouts, makes it possible for the hybrid to subsume both
MCTS as well as alpha-beta search as extreme cases, while allowing for
a spectrum of new search algorithms in between.

Preliminary results in the game of Breakthrough show the proposed hy-
brid to outperform its special cases of alpha-beta and MCTS. These
results are promising for the further development of rollout-based algo-
rithms that unify MCTS and minimax approaches.

1 Introduction

Monte Carlo Tree Search (MCTS) [8, 11] is a sampling-based tree search algo-
rithm. Instead of taking all legal moves into account like traditional full-width
minimax search, MCTS samples promising moves selectively. This is helpful in
many large search spaces with high branching factors. Furthermore, MCTS can
often take long-term effects of moves better into account than minimax, since it
typically uses Monte-Carlo simulations of entire games instead of a static heuris-
tic evaluation function for the evaluation of states. This can lead to greater
positional understanding with lower implementation effort. If exploration and



exploitation are traded off appropriately, MCTS asymptotically converges to
the optimal policy [11], while providing approximations at any time.

While MCTS has shown considerable success in a variety of domains [6],
there are still games such as Chess and Checkers where it is inferior to minimax
search with alpha-beta pruning [10]. One reason that has been identified for this
weakness is the selectivity of MCTS, its focus on only the most promising lines
of play. Tactical games such as Chess can have a large number of traps in their
search space [16]. These can only be avoided by precise play, and the selective
sampling of MCTS based on average simulation outcomes can easily miss or
underestimate an important move.

In previous work [2–4], the tactical strength of minimax has been combined
with the strategic and positional understanding of MCTS in MCTS-minimax
hybrids, integrating shallow-depth minimax searches into the MCTS framework.
These hybrids have shown promising results in tactical domains, both for the
case where heuristic evaluation functions are unavailable [3], as well as for the
case where their existence is assumed [2, 4]. In this paper, we continue this line
of work by integrating MCTS and minimax even more closely. Based on Huang’s
formulation of alpha-beta search as a rollout-based algorithm [5], we propose a
hybrid search algorithm MCTS-αβ that makes use of both MCTS rollouts as
well as alpha-beta rollouts. MCTS-αβ can switch from executing a rollout in
MCTS fashion to executing it in alpha-beta fashion at any node traversed in
the tree. During the search, all nodes accumulate both MCTS value estimates
as well as alpha-beta value bounds. A single rollout can collect both types of
information. Whenever a deepening iteration of alpha-beta rooted in a given
node is completed, the move leading to the best child found by this alpha-beta
search is awarded a number of MCTS wins in that node. This allows the hybrid
to combine both types of information throughout the tree.

Unlike previously proposed hybrid search algorithms, MCTS-αβ subsumes
both MCTS as well as alpha-beta search as extreme cases. It turns into MCTS
when only using MCTS rollouts, and into alpha-beta when only using alpha-
beta rollouts. By mixing both types of rollouts however, a spectrum of new
search algorithms between those extremes is made available, potentially leading
to better performance than either MCTS or alpha-beta in any given search
domain.

This paper is structured as follows. Section 2 gives some background on
MCTS and Huang’s rollout-based alpha-beta as the baseline algorithms of this
paper. Section 3 provides a brief overview of related work on hybrid algorithms
combining features of MCTS and minimax. Section 4 outlines the proposed
rollout-based hybrid MCTS-αβ, and Section 5 shows first experimental results
in the test domain of Breakthrough. Section 6 finally concludes and suggests
future research.



2 Background

The hybrid MCTS-αβ proposed in this paper is based on two search methods as
basic components: Monte Carlo Tree Search (MCTS) and minimax search with
alpha-beta pruning.

2.1 MCTS

The first component of MCTS-αβ is MCTS, which works by repeating the fol-
lowing four-phase loop until computation time runs out.

Phase one: selection. The tree is traversed from the root to one of its not
fully expanded nodes, choosing the move to sample from each state with the
help of a selection policy. The selection policy should balance the exploitation
of states with high value estimates and the exploration of states with uncertain
value estimates. In this paper, the popular UCT variant of MCTS is used, with
the UCB1-TUNED policy as selection policy [1].

Phase two: expansion. When a not fully expanded node has been reached,
one or more of its successors are added to the tree. In this paper, we always add
the one successor chosen in the current rollout.

Phase three: simulation. A default policy plays the game to its end, starting
from the state represented by the newly added node. MCTS converges to the
optimal move in the limit even when moves are chosen randomly in this phase.
Note that this phase is often also called “rollout” phase or “playout” phase in
the literature. We are calling it simulation phase here, and refer to its policy as
the default policy, while choosing “rollout” as the name for one entire four-phase
loop. This is in order to draw a clearer connection between MCTS rollouts in
this subsection and alpha-beta rollouts in the next one. It is also consistent with
the terminology used in [6].

Phase four: backpropagation. The value estimates of all states traversed in
the tree are updated with the result of the finished game.

Algorithm 1.1 shows pseudocode for a recursive formulation of MCTS used
as a first starting point for this work. gameResult(s) returns the game-theoretic
value of terminal state s. backPropagate(s.value, score) updates the MCTS
value estimate for state s with the new result score. UCB1-TUNED for example
requires a rollout counter, an average score and an average squared score of
all previous rollouts passing through the state. Different implementations are
possible for finalMoveChoice(); in this work, it chooses the move leading to
the child of the root with the highest number of rollouts.

Many variants and extensions of this framework have been proposed in the
literature [6]. In this paper, we are using MCTS with the MCTS-Solver extension
[21] as a component of MCTS-αβ. MCTS-Solver is able to backpropagate not
only regular simulation results such as losses and wins, but also game-theoretic
values such as proven losses and proven wins whenever the search tree encounters
a terminal state. The idea is marking a move as a proven loss if the opponent has
a winning move from the resulting position, and marking a move as a proven
win if the opponent has only losing moves from the resulting position. This



1 MCTS(root) {

2 while(timeAvailable) {

3 MCTSRollout(root)

4 }

5 return finalMoveChoice ()

6 }

7

8 MCTSRollout(currentState) {

9 if(currentState ∈ Tree) {

10 # selection

11 nextState ← takeSelectionPolicyMove(currentState)

12 score = MCTSRollout(nextState)

13 } else {

14 # expansion

15 addToTree(currentState)

16 # simulation

17 simulationState ← currentState

18 while(simulationState.notTerminalPosition) {

19 simulationState ← takeDefaultPolicyMove(simulationState)

20 }

21 score ← gameResult(simulationState)

22 }

23 # backpropagation

24 currentState.value ← backPropagate(currentState.value , score)

25 return score

26 }

Algorithm 1.1: Monte Carlo Tree Search.



avoids wasting time on the re-sampling of game states whose values are already
known. Additionally, we use an informed default policy instead of a random one,
making move choices based on simple knowledge about the domain at hand. It
is described in Section 5. Both of these improvements are not essential to the
idea of MCTS-αβ, but together allow for MCTS to win a considerable number
of games against alpha-beta in our experiments. This makes combining their
strengths more worthwhile than if alpha-beta utterly dominated MCTS (or the
other way around).

2.2 Rollout-based Alpha-beta

The second component of MCTS-αβ is alpha-beta search. Specifically, we base
this work on the rollout-based formulation of alpha-beta presented by Huang [5].
It is strictly equivalent not to classic alpha-beta search, but to an augmented
version alphabeta2. Alphabeta2 behaves exactly like classic alpha-beta if given
only one pass over the tree without any previously stored information, but it
can “outprune” (evaluate fewer leaf nodes than) classic alpha-beta when called
as a subroutine of a storage-enhanced search algorithm such as MT-SSS* [15].
See [5] for a detailed analysis.

The basic idea of rollout algorithms is to repeatedly start at the root and
traverse down the tree. At each node representing a game state s, a selection
policy chooses a successor state c from the set C(s) of all legal successor states
or children of s. In principle, any child could be chosen. However, it is known
from alpha-beta pruning that the minimax value of the root can be determined
without taking all children into account. Based on this realization, rollout-based
alpha-beta was constructed as a rollout algorithm that restricts the selection
policy at each state s to a subset of C(s). This enables the algorithm to visit the
same set of leaf nodes in the same order as alpha-beta, if the selection policy is
chosen correctly.

Algorithm 1.2 shows pseudocode for the rollout-based formulation of alpha-
beta used as a second starting point for this work. It requires the tree to maintain
a closed interval [v−s , v

+
s ] for every visited state s. These intervals are initialized

with [−∞,+∞] and contain at any point in time the true minimax value of the
respective state. When v−s = v+s , the minimax value of state s is found. When the
minimax value of the root is found and the search is over, finalMoveChoice()
chooses an optimal move at the root. The result of Algorithm 1.2 is independent
of the implementation of takeSelectionPolicyMove(feasibleChildren); in
order to achieve alpha-beta behavior however, this method always needs to re-
turn the left-most child in feasibleChildren. That is the implementation used
in this work. MAX and MIN refer to states where it is the turn of the maximizing
or minimizing player, respectively.

As mentioned by Huang, “it seems that [Algorithm 1.2] could be adapted to
an ’incremental’ rollout algorithm when incorporating admissible heuristic func-
tion at internal nodes (essentially an iterative deepening setting)” [5]. As shown
in Section 4, we extended Algorithm 1.2 with an heuristic evaluation function and



1 alphaBeta(root) {

2 while(v−root < v+root) {

3 alphaBetaRollout(root , v−root, v+root)

4 }

5 return finalMoveChoice ()

6 }

7

8 alphaBetaRollout(s, αs, βs) {

9 if( C(s) 6= ∅ ) {

10 for each c ∈ C(s) do {

11 [αc, βc] ←
[
max
{
αs, v

−
c

}
, min

{
βs, v

+
c

}]
12 }

13 feasibleChildren ← {c ∈ C(s)|αc < βc}
14 nextState ← takeSelectionPolicyMove(feasibleChildren)

15 alphaBetaRollout(nextState , αnextState, βnextState)

16 }

17 v−s ←

{
gameResult(s) if s is leaf

maxc∈C(s)v
−
c if s is internal and MAX

minc∈C(s)v
−
c if s is internal and MIN

18 v+s ←

{
gameResult(s) if s is leaf

maxc∈C(s)v
+
c if s is internal and MAX

minc∈C(s)v
+
c if s is internal and MIN

19 }

Algorithm 1.2: Rollout-based alpha-beta as proposed by Huang [5].

iterative deepening in order to create practical alpha-beta rollouts for MCTS-
αβ. Furthermore, Huang predicted that “traditional pruning techniques and the
recent Monte Carlo Tree Search algorithms, as two competing approaches for
game tree evaluation, may be unified under the rollout paradigm” [5]. This is
the goal of the work presented in this paper.

3 Related Work

The idea of combining the strengths of alpha-beta and MCTS in one search
algorithm is motivated for instance by the work of Ramanujan et al. [16], who
identified shallow traps as a feature of domains that are problematic for the
selectively searching MCTS. Informally, Ramanujan et al. define a level-k search
trap as the possibility of a player to choose an unfortunate move such that after
executing the move, the opponent has a guaranteed winning strategy at most k
plies deep. While such traps at shallow depths of 3 to 7 are not found in Go until
the latest part of the endgame, they are relatively frequent in Chess games even
at grandmaster level [16], partly explaining the success of MCTS in Go and its
problems in Chess. Finnsson and Björnsson [9] discovered the similar problem
of optimistic moves, which refers to seemingly strong moves that can be refuted
right away by the opponent, but take MCTS prohibitively many simulations to
evaluate correctly. The work presented in this paper is meant as a step towards



search algorithms that can successfully be used in both kinds of domains—those
favoring MCTS and those favoring alpha-beta until now.

Previous work on developing algorithms influenced by both MCTS and min-
imax has taken two main approaches. The first approach is to embed minimax
searches within the MCTS framework. Shallow minimax searches have for ex-
ample been used in every step of the simulation phase for Lines of Action [20],
Chess [17], and various multi-player games [14]. Baier and Winands studied
approaches that use minimax search without evaluation functions nested into
the selection/expansion phase, the simulation phase, and the backpropagation
phase of MCTS [3], as well as approaches that use minimax search with evalua-
tion functions in the simulation phase, for early termination of simulations, and
as a prior for tree nodes [2, 4].

The second approach is to identify individual features of minimax such
as minimax-style backups, and integrate them into MCTS. In the algorithm
UCTMAXH [18] for example, MCTS simulations are replaced with heuristic
evaluations and classic averaging MCTS backups with minimaxing backups. In
implicit minimax backups [12], both minimaxing backups of heuristic evaluations
and averaging backups of simulation returns are managed simultaneously.

This paper takes a new approach. While in our previous hybrids [2–4], alpha-
beta searches were nested into the MCTS framework and had to complete be-
fore MCTS could continue—MCTS and alpha-beta functioned as combined, but
separate algorithms—the newly proposed MCTS-αβ tightly interleaves MCTS
and alpha-beta. The formulation of alpha-beta as a rollout algorithm [5] allows
MCTS-αβ to decide about continuing a rollout in MCTS fashion or in alpha-beta
fashion at every node encountered during the search. As opposed to UCTMAXH

and implicit minimax mentioned above, MCTS-αβ is not picking and combin-
ing individual features of MCTS and minimax. It subsumes both regular MCTS
and regular alpha-beta when only MCTS rollouts or only alpha-beta rollouts
are used, but results in a new type of search algorithm when both types are
combined. A probability parameter p determines the mix.

Apart from Huang [5], several other researchers have proposed rollout-based
formulations of minimax search. For example, Weinstein, Littman, and Goschin
[19] presented a rollout algorithm that outprunes alpha-beta, and Chen et al. [7]
proposed a rollout algorithm similar to MT-SSS*. We chose Huang’s alpha-beta
formulation as a basis for this work because of its clear formal characterization,
unifying both alpha-beta and MT-SSS* under the rollout framework.

4 MCTS-αβ

The basic idea of MCTS-αβ is to allow for a mix of MCTS and alpha-beta
rollouts. A simple way of achieving this is by introducing a parameter p ∈ [0, 1]
as the probability of starting an MCTS rollout at the root. 1− p, conversely, is
the probability of starting an alpha-beta rollout instead. Assume that an MCTS
rollout is chosen at the root. At every recursive call of the MCTS rollout, the
randomized decision is made again whether to continue with MCTS or whether



to switch to alpha-beta, using the same probabilities. If the search tree is left
without switching to an alpha-beta rollout at any point, the simulation and
backpropagation phases are executed just like in a regular MCTS rollout. MCTS
value estimates are updated in all traversed nodes, and the next rollout begins.

If however any randomized decision indicates the start of an alpha-beta
rollout—either at the root or at a later stage of an MCTS rollout—then the
rollout continues in alpha-beta fashion, with the current node functioning as the
root of the alpha-beta search. This is similar to starting an embedded alpha-beta
search at the current node, like the MCTS-IP-M algorithm described in [2, 4].
But MCTS-αβ does not necessarily execute the entire alpha-beta search. The
newly proposed hybrid can execute only one alpha-beta rollout instead, and po-
tentially continue this particular alpha-beta search at any later point during the
search process—whenever the decision for an alpha-beta rollout is made again
at the same node. The interleaving of MCTS and minimax is more fine-grained
than in previous hybrids.

There are a few differences between the alpha-beta rollouts of Huang’s Al-
gorithm 1.2 and those of MCTS-αβ. First, MCTS-αβ uses an evaluation func-
tion to allow for depth-limited search. Second, these depth-limited searches are
conducted in an iterative deepening manner. Third, MCTS-αβ can reduce the
branching factor for alpha-beta rollouts with the help of move ordering and k-
best pruning (only searching the k moves ranked highest by a move ordering
function). Fourth, if an alpha-beta rollout of MCTS-αβ was called from an on-
going MCTS rollout instead of from the root, it returns the evaluation value of
its leaf node to that MCTS rollout for backpropagation. And fifth, if the alpha-
beta rollout is finishing a deepening iteration in a state s—if it is completing a
1-ply, 2-ply, 3-ply search etc—MCTS-αβ gives a bonus in MCTS rollouts to the
MCTS value estimate of the best child of s found in that iteration. At the same
time, the bonus given for the previous deepening iteration is removed, so that
only the currently best child of s is boosted.

This last point makes it clear how MCTS-αβ can subsume both MCTS and
alpha-beta. If p = 1, only MCTS rollouts are executed, and MCTS-αβ behaves
exactly like regular MCTS. If p = 0, only alpha-beta rollouts are started im-
mediately at the root, and only the best move found by the last deepening
iteration has a positive MCTS value estimate due to its bonus. MCTS-αβ there-
fore behaves exactly like alpha-beta (an iterative deepening version of Huang’s
augmented alphabeta2, to be precise). If 0 < p < 1 however, MCTS-αβ becomes
a true hybrid, combining MCTS and minimax behavior throughout the search
tree, and choosing moves at the root based on both real MCTS rollout counts
as well as MCTS rollout bonuses from the last completed deepening iteration of
alpha-beta.

Algorithm 1.3 shows pseudocode for MCTS-αβ. D(s) is the current search
depth for alpha-beta starting in state s, initialized to 1 for all states. K(s) is the
set of the k best successor states or children of state s as determined by the move
ordering function. random(0,1) returns a random, uniformly distributed value

in [0, 1].
[
v−s,d, v

+
s,d

]
is an interval containing the value of state s when searched



to depth d. eval(s) is a heuristic evaluation of state s, and sigmoid(x) is a
sigmoid transformation used to spread out heuristic evaluations to the interval
[0, 1]. s.giveBonus(b) adds b winning rollouts to the MCTS value estimate of
state s, and s.removeLastBonusGiven() removes the last bonus given to s.
finalMoveChoice() is the same as for regular MCTS, choosing the child with
the most rollouts at the root.

The parameters of MCTS-αβ are the MCTS rollout probability p, the bonus
weight w, the bonus weight factor f that defines how much stronger bonuses
become with the depth of the completed alpha-beta search, the number of moves
k for k-best pruning, and the maximum minimax depth l. When a depth-l alpha-
beta search starting from state s is completed, the search depth is not further
increased there. Only MCTS rollouts will be started from s in the rest of the
search time.

Note that while an MCTS rollout can turn into an alpha-beta rollout at any
node, a mid-rollout switch from alpha-beta back to MCTS is not possible in
MCTS-αβ.

5 Experimental Results

We conducted preliminary experiments with MCTS-αβ in the deterministic,
two-player, zero-sum game of Breakthrough. MCTS parameters such as the ex-
ploration factor C (C = 0.8) were optimized for the baseline MCTS-Solver and
kept constant during testing. We used minimax with alpha-beta pruning, move
ordering, and iterative deepening, but no other search enhancements. Every ex-
primental condition consisted of 1000 games, with each player playing 500 as
White and 500 as Black. All algorithms were allowed to expand 2500 nodes be-
fore making each move decision, unless specified otherwise. A node limit was
chosen instead of a time limit in order to first test whether the newly proposed
hybrid can search more effectively than its special cases MCTS and alpha-beta,
without taking into account the additional questions of using more or less com-
putationally expensive evaluation functions and MCTS default policies.

Subsection 5.1 describes the rules of Breakthrough as well as the evaluation
function, move ordering, and default policy used for it. Subsection 5.2 shows the
results.

5.1 Test Domain

The variant of Breakthrough used in our experiments is played on a 6×6 board.
The game was originally described as being played on a 7× 7 board, but other
sizes such as 8×8 are popular as well, and the 6×6 board preserves an interesting
search space.

At the beginning of the game, White occupies the first two rows of the board,
and Black occupies the last two rows of the board. The two players alternatingly
move one of their pieces straight or diagonally forward. Two pieces cannot occupy
the same square. However, players can capture the opponent’s pieces by moving



1 MCTSAlphaBeta(root) {

2 while(timeAvailable) {

3 if(random (0,1)<p) {

4 MCTSRollout(root)

5 } else {

6 alphaBetaRollout(root , D(root), v−
root,D(root)

, v+
root,D(root)

)

7 }

8 }

9 return finalMoveChoice ()

10 }

11

12 alphaBetaRollout(s, d, αs, βs) {

13 if( K(s) 6= ∅ and d > 0 ) {

14 for each c ∈ K(s) do {

15 [αc, βc] ←
[
max
{
αs, v

−
c,d−1

}
, min

{
βs, v

+
c,d−1

}]
16 }

17 feasibleChildren ← {c ∈ K(s)|αc < βc}
18 nextState ← takeSelectionPolicyMove(feasibleChildren)

19 rolloutResult ← alphaBetaRollout(nextState , d-1, αnextState, βnextState)

20 }

21 v−
s,d
←


gameResult(s) if s is leaf

eval(s) if d = 0

maxc∈K(s)v
−
c,d−1

if d > 0 and s is internal and MAX

minc∈K(s)v
−
c,d−1

if d > 0 and s is internal and MIN

22 v+
s,d
←


gameResult(s) if s is leaf

eval(s) if d = 0

maxc∈K(s)v
+
c,d−1

if d > 0 and s is internal and MAX

minc∈K(s)v
+
c,d−1

if d > 0 and s is internal and MIN

23 if(K(s) = ∅ or d = 0) {

24 rolloutResult ← v+
s,d

25 }

26 return rolloutResult

27 }

28

29 MCTSRollout(currentState) {

30 if(currentState ∈ Tree) {

31 nextState ← takeSelectionPolicyMove(currentState)

32 if(random (0,1)<p or D(nextState )= l {

33 score ← MCTSRollout(nextState)

34 } else {

35 score ← alphaBetaRollout(nextState , D(nextState),

36 v−
nextState,D(nextState)

, v+
nextState,D(nextState)

)

37 score ← sigmoid(score)

38 if(v−
nextState,D(nextState)

= v+
nextState,D(nextState)

) {

39 bestChild ← bestChildFoundByAlphaBetaIn(nextState)

40 bonus ← score * w * fD(nextState)

41 bestChild.removeLastBonusGiven ()

42 bestChild.giveBonus(bonus)

43 D(nextState) ← D(nextState )+1

44 }

45 }

46 } else {

47 addToTree(currentState)

48 simulationState ← currentState

49 while(simulationState.notTerminalPosition) {

50 simulationState ← takeDefaultPolicyMove(simulationState)

51 }

52 score ← gameResult(simulationState)

53 }

54 currentState.value ← backPropagate(currentState.value , score)

55 return score

56 }

Algorithm 1.3: MCTS-αβ.



diagonally onto their square. The game is won by the player who succeeds first
at advancing one piece to the home row of her opponent, i.e. reaching the first
row as Black or reaching the last row as White.

The simple evaluation function we use for Breakthrough gives the player one
point for each piece of her color. The opponent’s points are subtracted, and the
resulting value is then normalized to the interval [0, 1].

The move ordering ranks winning moves first. Second, it ranks saving moves
(captures of an opponent piece that is only one move away from winning). Third,
it ranks captures, and fourth, all other moves. Within all four groups of moves,
moves that are closer to the opponent’s home row are preferred. When two moves
are ranked equally by the move ordering, they are searched in random order.

The informed default policy used for the experiments always chooses the
move ranked first by the above move ordering function.

5.2 Performance of MCTS-αβ

In our first set of experiments, we hand-tuned the five MCTS-αβ parameters
against two opponents: regular alpha-beta with the same evaluation function,
move ordering, and k-best pruning (k = 10 was found to be the strongest set-
ting, which confirms our observations in [2] for 6× 6 Breakthrough), as well as
regular MCTS with the same informed default policy as described in the previous
subsection. The best parameter settings found were k = 8, l = 6, w = 200, f = 8,
and p = 0.95. With these settings, the results for MCTS-αβ were a winrate of
63.7% against alpha-beta and 58.2% against MCTS. This means MCTS-αβ is
significantly stronger than both of its basic components (p < 0.001). MCTS won
63.6% of 1000 games against alpha-beta, which means that also in the resulting
round-robin competition between the three players MCTS-αβ performed best
with 1219 won games, followed by MCTS with 1054 and alpha-beta with 727
wins in total. The optimal parameters for MCTS-αβ in this scenario include a
high MCTS rollout probability (p = 0.95), resulting in few alpha-beta rollouts
being carried out. This fact seems to be agree with the strong performance of
regular MCTS against regular alpha-beta. MCTS rollouts with an informed de-
fault policy seem to be more effective than alpha-beta rollouts with the primitive
evaluation function described above, especially when the higher computational
cost of the MCTS simulations is not taken into consideration.

In a second set of experiments, we contrasted this with a different scenario
where no strong default policy is available. Instead, MCTS simulations are
stopped after 3 random moves, the heuristic evaluation function is applied to
the current state, and the resulting value is backpropagated as MCTS simula-
tion return. This technique is called MCTS-IC here for consistency with previous
work [4]; a similar technique where the evaluation function value is rounded to
either a win or a loss before backpropagation has also been studied under the
name MCTS-EPT [13]. Alpha-beta rollouts remain unchanged. MCTS-IC with
the simple evaluation function we are using is weaker than MCTS with the
strong informed policy described above—in a direct comparison, MCTS-IC won
only 20.5% of 1000 games. In this setting, and keeping all other parameters



constant, MCTS-αβ performed best with p = 0.3. This confirms that as soon
as MCTS is weakened in comparison to alpha-beta, alpha-beta rollouts become
more effective for MCTS-αβ than MCTS rollouts, and the optimal value for p is
lower. The results of 1000 games against the baselines were 53.7% against reg-
ular alpha-beta (not significantly different), and 73.1% against MCTS-IC (here
the hybrid is significantly stronger with p < 0.001). With alpha-beta winning
73.1% of games against MCTS-IC as well, this means a round-robin result of
1268 wins for MCTS-αβ, now followed by alpha-beta with 1194 and MCTS-IC
with 538 wins. Although the lack of a strong MCTS default policy has pushed
alpha-beta ahead of MCTS, the hybrid algorithm still leads.

Figures 1 and 2 illustrate the performance landscape of MCTS-αβ with re-
gard to the crucial p parameter, both in the scenario with informed simulations
and in the scenario with MCTS-IC simulations. Each data point results from
1000 games against regular alpha-beta.
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Fig. 1: Performance of MCTS-αβ with informed MCTS simulations.

In a third and last set of experiments, we tested the generalization of the
behavior of MCTS-αβ to different time settings. In the scenario with MCTS-
IC simulations, all parameter settings were left unchanged (p = 0.3, k = 8,
l = 6, w = 200, f = 8), but all algorithms were now allowed 10000 nodes per
move. MCTS-αβ won 51.9% of 1000 games against regular alpha-beta, and 76.4%
against regular MCTS-IC. Alpha-beta won 71.9% of games against MCTS-IC.
The round-robin result is 1283 wins for MCTS-αβ, followed by alpha-beta with
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Fig. 2: Performance of MCTS-αβ with MCTS-IC simulations.

1200 and MCTS-IC with 517 wins. The algorithms were also tested against each
other with only 500 nodes per move—here parameter l was reduced to 4, while
all other parameters stayed the same (experience with other MCTS-minimax
hybrids has shown that shorter search times often profit from keeping alpha-
beta more shallow [2]). For this setting, the results were 54.6% for MCTS-αβ
versus alpha-beta, 67.2% for MCTS-αβ versus MCTS-IC, and 74.0% for alpha-
beta versus MCTS-IC. Added up, this results in a round-robin with 1218 wins
for MCTS-αβ, 1194 for alpha-beta, and 588 for MCTS-IC. In conclusion, the
relative performance of MCTS-αβ generalized to time settings 4 times longer as
well as 5 times shorter without requiring extensive re-tuning.

6 Conclusion and Future Research

In this paper, we introduced the new hybrid search algorithm MCTS-αβ. It is
based on MCTS rollouts and alpha-beta rollouts and unifies both search ap-
proaches under the same framework. While subsuming regular alpha-beta and
regular MCTS as extreme cases, MCTS-αβ opens a new space of search algo-
rithms in between.

Preliminary results in the game of Breakthrough are promising, but do not
constitute much more than a proof of concept yet. More work has to be done
to gain an understanding of MCTS-αβ, and to further develop rollout-based
MCTS-minimax hybrids. A first possible research direction is the exploration



of different design choices in the algorithm. Can alpha-beta and MCTS rollouts
be more intelligently combined than by choosing them at random? How much
playing strength comes from the backpropagated evaluation values, and how
much from the MCTS bonuses given after alpha-beta finishes a search depth? A
second direction is an analysis of the conditions under which MCTS-αβ works
best. Does it only show promise when the performance of MCTS and alpha-beta
in the domain at hand are at least roughly comparable, or can it also improve
an algorithm which is already clearly superior? How does MCTS-αβ perform
against MCTS and alpha-beta at equal time controls? And finally, a comparison
of MCTS-αβ with previously proposed hybrids would be of great interest.

Acknowledgment. The author thanks the Games and AI group, Department
of Data Science and Knowledge Engineering, Maastricht University, for compu-
tational support.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-Time Analysis of the Multiarmed
Bandit Problem. Machine Learning 47(2-3), 235–256 (2002)

2. Baier, H.: Monte-Carlo Tree Search Enhancements for One-Player and Two-Player
Domains. Ph.D. thesis, Maastricht University, Maastricht, The Netherlands (2015)

3. Baier, H., Winands, M.H.M.: Monte-Carlo Tree Search and Minimax Hybrids. In:
2013 IEEE Conference on Computational Intelligence and Games, CIG 2013. pp.
129–136 (2013)

4. Baier, H., Winands, M.H.M.: Monte-Carlo Tree Search and Minimax Hybrids with
Heuristic Evaluation Functions. In: Cazenave, T., Winands, M.H.M., Björnsson,
Y. (eds.) Computer Games Workshop at 21st European Conference on Artificial
Intelligence, ECAI 2014. Communications in Computer and Information Science,
vol. 504, pp. 45–63 (2014)

5. Bojun Huang: Pruning Game Tree by Rollouts. In: Bonet, B., Koenig, S. (eds.)
Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015. pp. 1165–
1173. AAAI Press (2015)

6. Browne, C., Powley, E.J., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and AI
in Games 4(1), 1–43 (2012)

7. Chen, J., Wu, I., Tseng, W., Lin, B., Chang, C.: Job-Level Alpha-Beta Search.
IEEE Transactions on Computational Intelligence and AI in Games 7(1), 28–38
(2015)

8. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) 5th Inter-
national Conference on Computers and Games (CG 2006). Revised Papers. Lecture
Notes in Computer Science, vol. 4630, pp. 72–83. Springer (2007)

9. Finnsson, H., Björnsson, Y.: Game-Tree Properties and MCTS Performance. In:
IJCAI’11 Workshop on General Intelligence in Game Playing Agents (GIGA’11).
pp. 23–30 (2011)

10. Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelli-
gence 6(4), 293–326 (1975)
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