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Monte-Carlo Tree Search(MCTS) [3, 5] is a promising choice for online planning in large MDPs. It
is a best-first, sample-based search algorithm in which every state in the search tree is evaluated by the
average outcome of Monte-Carlo rollouts from that state. Since MCTS is based on sampling, it does not
require a transition function in explicit form, but only a generative model of the domain. Because it grows a
highly selective search tree guided by its samples, it can handle search spaces with large branching factors.
By using Monte-Carlo rollouts, MCTS can take long-term rewards into account even with distant horizons.
Combined with multi-armed bandit algorithms to trade off exploration and exploitation, MCTS has been
shown to guarantee asymptotic convergence to the optimal policy [5], while providing approximations when
stopped at any time.

For the consistency of MCTS, i.e. for the convergence to the optimal policy, uniformly random rollouts
beyond the tree are sufficient. However, heuristically informed rollout strategies typically speed up con-
vergence [4]. In this paper, we proposeNested Monte-Carlo Tree Search(NMCTS), using the results of
lower-level searches recursively to provide rollout policies for searches on higher levels.

So far, no nested search algorithm has made use of the selectivity and exploration-exploitation control
that MCTS provides. In the context of MCTS, nested search hasso far only been performed offline to
provide opening databases for the underlying online game playing agent. The different levels of search
therefore used different tree search algorithms adapted totheir respective purpose, and nested and regular
MCTS have not been compared on the same task. In this extendedabstract, we propose Nested Monte-Carlo
Tree Search (NMCTS) as a general online planning algorithm for MDPs.

We define a level-0Nested Monte-Carlo Tree Search(NMCTS) as a single rollout with the base rollout
policy—either uniformly random, or guided by a simple heuristic. A level-1 NMCTS search corresponds
to MCTS, employing level-0 searches as state evaluations. Alevel-n NMCTS search forn ≥ 2 recursively
utilizes the results of level-(n− 1) searches as evaluation returns.

As the selection, expansion and backpropagation steps of MCTS are preserved in NMCTS, many suc-
cessful techniques from MCTS research such as the UCB1-TUNED selection policy can be applied in NM-
CTS as well. Parameters can be tuned for each level of search independently.

In some domains, it is effective not to spend the entire search time on the initial position of a problem,
but to distribute it over all actions in the episode (or the first z actions). Search and execution are thus
interleaved. We call this techniqueaction-by-action searchas opposed toglobal search, and it is optionally
applicable at all levels of NMCTS. In case NMCTS is used with action-by-action search, a decision has to
be made which action to choose and execute at each step of the search. Two possible options are a) choosing
the most-sampled action—as traditionally done in MCTS—, or b)choosing the next action in the overall
best solution found so far. Setting NMCTS to action-by-action search, using only one rollout per legal action
in each action search, and then choosing the next action of the best known solution leads to NMCS [2] as
a special case of NMCTS. This special case does not provide for an exploration-exploitation tradeoff, nor
does it build a tree going deeper than the number of nesting levels used, but it allows relatively deep nesting
due to the low number of rollouts per search level.
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We tested Nested Monte-Carlo Tree Search on three differentdeterministic, fully observable MDPs: The
puzzles named “SameGame”, “Clickomania” and “Bubble Breaker”. These domains have identical transi-
tion functions, but different reward functions, resultingin different distributions of high-quality solutions.
The decision problem associated with these optimization problems is NP-complete [1].

We compared regular MCTS and level-2 NMCTS in all three domains, using a random rollout policy.
For SameGame, we also employed a state-of-the-art informedrollout policy, consisting of the TabuColor-
RandomPolicy [6] (setting a “tabu color” at the start of eachrollout that is not chosen as long as groups of
other colors are available) in combination with a multi-armed bandit learning the best-performing tabu color
for the position at hand (based on UCB1-TUNED).

As it has been shown for SameGame that restarting several short MCTS runs on the same problem can
lead to better performance than a single, long run [6], we tested several numbers of randomized restarts for
MCTS and tuned the selection policy for each of them. The samesettings were then used for NMCTS, with
the number of nested level-1 NMCTS searches equivalent to the number of restarts for multi-start MCTS.

Results show that in Bubble Breaker and SameGame—in the latter using both random and informed
rollouts—level-2 NMCTS significantly outperformed multi-start MCTS in all experimental conditions. The
best results in SameGame were achieved building a level-2 tree out of 36,480 level-1 searches of 250
ms each, with informed base-level rollouts. In comparison to the best performance of multi-start MCTS,
achieved with 2280 restarts of 4-second searches, the use ofa nested tree increased the average best solution
per position from 3395.9 to 3465.96. As a comparison, a doubling of the search time to 4560 restarts only
resulted in a performance increase to 3431.0.

In Clickomania, level-2 NMCTS also achieved the highest score. While the results of multi-start MCTS
for different numbers of restarts suggest that a single, global MCTS search could perform relatively well
in Clickomania, memory limitations reduced the effectivity of this approach. NMCTS however is able
to constantly reuse tree nodes of lower-level searches, andtherefore suffers less from this problem. We
observed that the best-performing NMCTS setting tested used less than15% of memory of what a single,
global MCTS search would have required for optimal performance.

In further experiments, we compared level-2 NMCTS to level-3 NMCS. Here, NMCTS used action-
by-action search on level 2, and advanced from action to action by choosing the next action of the best
solution found so far. NMCS was not able to complete a level-3search in the given time; consequently, the
best solutions found after the given computation time had elapsed were used for the comparisons. NMCTS
outperformed NMCS in SameGame with random playouts, SameGame with informed playouts and Click-
omania. For Bubble Breaker, manual tuning has not revealed parameter settings superior to NMCS yet.
Automatic parameter tuning is in preparation.

In conclusion, empirical results in the test domains of SameGame, Bubble Breaker and Clickomania
show that NMCTS significantly outperforms regular MCTS. Experiments in SameGame and Clickomania
suggest performance superior to NMCS. Since both MCTS and NMCS represent specific parameter settings
of NMCTS, correct tuning of NMCTS has to lead to greater or equal success in any MDP domain.
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