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Abstract—Turn-based multi-action adversarial games are games
in which each player turn consists of a sequence of atomic actions,
resulting in an extremely high branching factor. Many strategy
board, card, and video games fall into this category, for which the
current state of the art is Online Evolutionary Planning (OEP)
– an evolutionary algorithm (EA) that treats atomic actions as
genes, and complete action sequences as genomes. In this paper,
we introduce Evolutionary Monte Carlo Tree Search (EMCTS)
to tackle this challenge, combining the tree search of MCTS
with the sequence-based optimization of EAs. Experiments on the
game Hero Academy show that EMCTS convincingly outperforms
several baselines including OEP and an improved variant of OEP
introduced in this paper, at different time settings and numbers
of atomic actions per turn. EMCTS also scales better than any
existing algorithm with the complexity of the problem.

Index Terms—game tree search, Monte Carlo Tree Search,
strategy games

I. INTRODUCTION

Computer programs typically play adversarial games with a
form of search, choosing paths to desirable future game states
as determined by e.g. a heuristic evaluation function. Monte
Carlo Tree Search (MCTS) [1], [2] is the state of the art search
framework for a variety of classical board games with moderate
branching factors of up to a few hundred [3], as well as many
card games, video games, and non-game domains [4].

However, most turn-based multi-action adversarial games
– games in which each turn consists of a sequence of atomic
actions, instead of just a single action – have much higher
branching factors. This class of games includes board games
such as Arimaa and Risk, mobile games such as Battle of
Polytopia, and PC games such as Civilization, XCOM, Heroes
of Might and Magic, and Into the Breach. A turn in a strategy
game could for example consist of moving nine units with
ten available actions each, resulting in a branching factor of
one billion. Vanilla MCTS cannot handle this complexity, even
with the help of various techniques for reducing the effective
branching factor. Finding a good action sequence for a single
turn, even without considering the next turns, is a challenging
search problem in such domains. That is the problem we
tackle in this paper. While some of the games in this class
feature indeterminism (e.g. Risk) or partial observability (e.g.
Civilization), our initial focus here is on deterministic multi-
action adversarial games with perfect information.

One possible approach is searching a tree in which each edge
represents an atomic action instead of a complete turn, resulting
in a much smaller branching factor, but also a much deeper
tree (see [5] for a similar trade-off). According to Kozelek [6]
and Justesen et al. [7] however, vanilla MCTS is often not able
to search the tree of its current turn deeply enough, and focuses
too much on optimizing the first actions compared to the last
actions. MCTS can be enhanced with pruning techniques that
make the search spend the same amount of time on each
action [8] – but this still suffers from the problem that MCTS
has to find the actions of its turn in a fixed order, so that
choices on earlier actions can influence later actions but not
vice versa. Justesen et al. therefore proposed a different, tree-
less search approach: Online Evolutionary Planning (OEP), an
evolutionary algorithm that treats atomic actions as genes and
complete turns as genomes [9], [7]. By searching over the space
of possible next turns with the help of crossover and mutation,
it can optimize each action equally and simultaneously. OEP
is the current state of the art in multi-action adversarial games.

In this paper, we propose an alternative approach called
Evolutionary MCTS (EMCTS), combining some of the features
of MCTS and evolutionary algorithms. It searches a tree
with nodes representing genomes (in multi-action adversarial
games: complete turns instead of partial turns, or the states
resulting from them), and with edges representing mutations of
those genomes (in multi-action adversarial games: mutations of
turns instead of additional atomic actions). EMCTS therefore
explores the mutation landscape of evolutionary algorithms
in a systematic, best-first manner, providing evolution with
lookahead search.

We use the same testbed game as Justesen et al. [7] in
this paper: the turn-based multi-action adversarial game Hero
Academy. We also introduce an improved variant of OEP called
greedy OEP by transferring some ideas from EMCTS to OEP.
EMCTS is then compared to vanilla OEP, greedy OEP, and
four other baseline search algorithms including two vanilla
MCTS variants specifically designed for Hero Academy, at
different CPU time per turn and at different numbers of actions
per turn.

This paper begins with a brief review of relevant related
work in Section II. Section III describes our testbed, Hero
Academy, outlines the baseline algorithms we are comparing,



and introduces Evolutionary MCTS. Section IV presents our
experimental setup and results, and Section V gives our
conclusions and suggests future work.

II. BACKGROUND AND RELATED WORK

This section reviews work on MCTS for very large branch-
ing factors, on the current state of the art for multi-action
adversarial games – Online Evolutionary Planning – and on
previous attempts at combining evolution and tree search.

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [1], [2] is a best-first
tree search algorithm based on stochastic simulations for state
evaluation, which has been successfully applied to a large
variety of games and other tasks [4]. The algorithm typically
constructs a search tree with nodes representing game states,
and edges representing actions leading from one state to another.
In a deterministic game and ignoring transpositions, this can
also be seen as a tree in which nodes represent the list of
actions that have been applied from the root state to reach
their respective state – this view will be helpful later. MCTS
begins its search at a root node corresponding to the current
game state. It then repeats the following four-phase loop until
computation time runs out:

1. In the selection phase, a selection policy is used to traverse
the tree until an unexpanded action is chosen. The selection
policy should balance the exploitation of states with high value
estimates and the exploration of states with uncertain value
estimates. In this paper, the popular UCB policy is used [10].

2. In the expansion phase, the previously unexpanded action
and a node representing its successor state are added to the
tree.

3. In the rollout phase, a rollout policy is used to play out
the remaining part of the simulated game, starting from the
state represented by the newly added node. This rollout policy
can be uniformly random, but can also profit from heuristic
game knowledge. In this paper, we use ε-greedy rollouts, which
select a random action with probability ε, and otherwise follow
simple greedy heuristics.

4. In the backpropagation phase finally, the value estimates
of all states traversed during the simulation are updated with
the result of the finished game.

Several MCTS variants and enhancements have been pro-
posed over time in order to apply MCTS to games with
increasingly higher branching factors.

First-play urgency [11] encourages exploitation by providing
a value for unvisited child nodes, removing the need for MCTS
to visit every child of a node before a selection policy like
UCB can be applied. Progressive widening [12] and unpruning
[13] approach the branching factor problem in Go by first
limiting the number of actions expanded in a new MCTS node,
then growing it over time so as to improve value estimates
and still guarantee convergence in the limit. For games with
much higher branching factors such as real-time strategy (RTS)
games, script-based approaches have been developed in order to
search over a small number of hand-coded scripts instead of a

larger number of atomic actions: Hierarchical Portfolio Search
[14] and Script-based UCT [15] fall into this category, as well
as the non-MCTS approach of Portfolio Greedy Search [16].
Some previous works have applied MCTS variants to domains
with very large or continuous action spaces by making strongly
simplifying assumptions such as independence of units in an
RTS game [17], or similarity of “close” actions in a physics-
based domain [18]. Often, the assumption is made that each
unit can perform one action per time step, as is typical for RTS
games. In this paper, we do not assume independence of units,
do not tie actions to units, and do not assume the existence of
predefined policies or scripts. We do however use a heuristic
evaluation function – which is hand-coded in our test domain,
but could in future work be automatically learned [3].

We are using two specifically adapted variants of MCTS as
baselines in our experiments, described in Subsection III-B.
The proposed EMCTS is similar to vanilla MCTS in the
sense that it uses the same tree search structure of selection,
expansion, rollout, and backpropagation, while working on a
new, evolution-inspired search space.

B. Online Evolutionary Planning

Evolutionary algorithms (EAs) are a class of optimization
algorithms inspired by natural selection that has been used
extensively for evolving and training AI agents for games
[19], [20]. In the classic, offline evolutionary approach, an AI’s
parameters are evolved using its performance at playing the
game as a fitness function. No evolution is applied after the
training has finished and the AI is deployed in the game [21],
[22], [23], [24].

Online evolution is a newer approach, in which evolutionary
algorithms are applied during gameplay. This can take the
form of evolving the AI’s parameters while it is playing [25].
However, it is also possible to evolve the next action(s) to take
in the currently running game. Rolling Horizon Evolutionary
Algorithm (RHEA) [26], [27] for example evolves fixed-length
future sequences of actions in a single-player game, which are
compared by simulating them and evaluating the resulting game
states. When a time limit is reached, the algorithm executes the
first action in the best action sequence found, and continues
search on action sequences starting from the next time step
(“rolling” search horizon).

Online Evolutionary Planning (OEP) [28], [7] is a recent
evolutionary approach that is applicable to adversarial multi-
action games. It optimizes only the action sequence of the
current turn, without lookahead to future turns of the player or
the opponent. It can therefore be seen as doing one iteration of
RHEA at the beginning of each turn, and with a search horizon
of one turn. The best action sequence found is then executed
without “rolling” the horizon forward action by action.

OEP begins its search by creating an initial population of
genomes, each genome representing a complete turn (fixed-
length sequence of actions). Vanilla OEP chooses each of these
genomes by repeatedly selecting random actions starting from
the current game state. This population is then improved from



generation to generation, until a given computation time runs
out. Each generation consists of the following four phases:

1. All genomes are translated to their respective phenotypes,
the game states resulting from applying their action sequence
to the current game state. The fitness of these phenotypes is
then evaluated with the help of a static heuristic evaluation.

2. The genomes with the lowest fitness are removed from
the population. The proportion of genomes to be removed is a
parameter called the kill rate.

3. The surviving genomes are each paired with a randomly
chosen different genome, and create an offspring through
uniform crossover. If this crossover operator leads to an illegal
action in the offspring, it is repaired by replacement with an
action from the other parent, or otherwise with a random legal
action.

4. A proportion of the offspring, determined by a parameter
called the mutation rate, undergoes mutation. One randomly
chosen action of the sequence is changed to another action
randomly chosen from all legal actions. If this leads to illegal
actions later in the sequence, they are replaced with random
legal actions as well.

When the time budget is exhausted, OEP returns the action
sequence represented by the current best genome, which is then
executed action by action. In the words of Wang et al. “the
action selection problem is seen as an optimization problem
rather than a planning problem” [29]. This is currently the best-
performing approach for turn-based multi-action adversarial
games, in particular the test domain of this paper: Hero
Academy [7]. It has also been applied to other problems such
as micro battles [29] or online build order adaptation [30] in
RTS games.

We are using the original OEP, as well as a new improved
variant, as baselines in our experiments. The proposed EMCTS
is similar to OEP in the sense that in multi-action adversarial
games, it also searches a space of complete turns, which are
connected to each other through the same mutation operator.
It is different in being a tree search algorithm.

C. Hybrids of tree search and evolution

Several other methods have been published that combine
ideas from tree search algorithms and evolutionary algorithms.

Gaina et al. [31] experimented in General Video Game AI
(GVGAI) with splitting the total search time in two, using
MCTS in the first half to provide an initial solution, which is
then refined by RHEA in the second half. This was able to
outperform RHEA, but not MCTS. Horn et al. [32] hybridized
MCTS and RHEA in two different ways: By making use of
limited-depth Monte Carlo simulations in the evaluation of
RHEA genomes, and by running RHEA and MCTS separately
and choosing the best solution found by either of them for
execution. EMCTS on the other hand uses a single search
algorithm, and a tree search with static state evaluation instead
of an evolutionary search with rollouts for evaluation. Lucas et
al. [33] used an evolutionary algorithm to improve the rollout
policy of MCTS while the search is running. Perez-Liebana
et al. [34] adapted a similar method for GVGAI, combining

it with a knowledge base to improve reward calculations of
given states. While improving MCTS or RHEA performance
in various single-player games, the algorithms developed for
the GVGAI framework are not straightforwardly applicable to
multi-action adversarial games.

For adversarial games, Hong et al. [35] proposed a strategy
to evolve paths through a game tree with the help of an
evolutionary algorithm. While their approach assumes identical
actions to be available in all states at the same search depth,
which is not the case in most real-world games including our
testbed Hero Academy, it gives an interesting indication for
possible future work that could take opponent actions into
account.

III. METHODS

This section briefly describes the game we use as testbed,
lists the search algorithms we are comparing to, and finally
presents our approach: Evolutionary MCTS.

A. Test Domain: Hero Academy

Rules. Our test domain is a simplified1 Java clone [36] of
Hero Academy [37], a two-player turn-based tactics game.
Players can use a variety of combat units, items, and spells
by first drawing them from a card deck onto their hand, and
then deploying, casting, or moving them on a battlefield of
9×5 squares. Special squares on this battlefield allow for unit
deployment, boost the stats of individual units, or represent
a player’s two crystals. The game is won by the first player
to either eliminate all enemy units, or to destroy both enemy
crystals. More details on implementation and rules can be
found in [28].

Fig. 1: The testbed game Hero AIcademy. The six symbols at the
bottom represent the current player’s hand, and the numbers below
the doors represent the deck sizes. One of the red player’s crystals
has already been destroyed.

A central mechanic of the game are the action points (AP).
For each turn, the player to move receives a number of action
points – five in the standard form of the game. Each action

1For example, only the “Council” team of units is available.



point can be used for any one atomic action such as deploying
a unit from the player’s hand onto the battlefield, moving
a unit on the battlefield, attacking an enemy unit, healing a
friendly unit, and others. The player can spend any number of
action points on a single unit, for example by moving it several
times. With an average of 30-60 actions available per game
state, depending on the playstyle, the full branching factor
per turn can be roughly estimated to be 305 ≈ 2.4 × 106 to
605 ≈ 7.8× 108. Finding the best sequence of actions for any
given turn is therefore a challenging search problem in itself.

The order of cards in the deck as well as the opponent’s
cards are unknown to the Hero Academy player. However, this
paper focuses on the challenge of multi-action turns, ignoring
the aspects of hidden information and indeterminism as in [7].

In line with Justesen et al.’s prior work on Hero Academy,
we use game knowledge for state evaluation as well as action
pruning and ordering:

State evaluation. All algorithms compared in this paper
use the same heuristic evaluation function. This function is a
linear combination of features such as the current health of
individual units, whether they are equipped with certain items,
and whether they are standing on special squares. Improving
this hand-coded function with machine learning, and testing if
our conclusions still hold, could be worthwhile future work.

Action pruning and ordering. All algorithms compared in
this paper use a form of hard pruning, removing a number
of redundant or provably suboptimal actions from the set of
available actions considered in any given state. The two MCTS
variants considered as baselines also make use of static action
ordering, giving the more promising actions priority in their
expansion and rollout phases. The heuristics used for this are
simpler and faster than those of the evaluation function.

The interested reader can refer to [28] for a full definition of
the heuristic evaluation function and the pruning and ordering
strategies.

B. Baseline Approaches

In order to make our results directly comparable to the litera-
ture, we are testing our approach against five of the algorithms
described in [7]. Four of them are tree search techniques, and
one is Online Evolutionary Planning representing the state of
the art for Hero Academy.

Greedy Action. The Greedy Action AI chooses the first
action of its turn with a simple one-ply search of all legal
actions, maximizing the heuristic evaluation of the immediately
resulting state. This is repeated for each action point, i.e. for
all five actions of the turn.

Greedy Turn. The Greedy Turn AI chooses its actions
by attempting a five-ply depth-first search of the entire turn,
maximizing the heuristic evaluation of the leaf states resulting
from full turns. It uses a transposition table in order to avoid
re-visiting states. Actions are ordered for search with the
evaluation function, which is especially important since Greedy
Turn can usually not exhaustively search the entire turn in the
given time limit.

Non-exploring MCTS. This AI is the first MCTS variant
adapted for multi-action adversarial games in [7]. It searches a
game tree as shown in Figure 2, in which each edge represents
an additional action for the turn under consideration (or its
application). The opponent’s next turn can be reached by a
tree deeper than five plies, the number of action points. The
selection policy of this MCTS variant is UCB, and the rollout
policy deterministically follows the action ordering heuristics.
It was found to improve performance when rollouts are just
long enough to complete the current turn of the player to act
in the leaf node, calling the heuristic state evaluator at the end
of the turn for a rollout result. The MCTS exploration factor is
set to C = 0 in an attempt to grow a deep enough tree (pure
exploitation).

M
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Fig. 2: Tree structure as searched by vanilla MCTS and its vari-
ants (non-expl. MCTS, BB-MCTS). Nodes represent partial action
sequences, or the states resulting from them. Edges represent the
addition of an atomic action to an action sequence, or the application
of an atomic action to a state. After each node expansion, a rollout
is performed for evaluation. (We use symbols to represent different
atomic actions.)

Bridge-burning MCTS (BB-MCTS). This MCTS variant
searches the same kind of tree shown in Figure 2. Instead of
deterministic rollouts, it uses ε-greedy rollouts with ε = 0.5,
which also only reach to the end of the current turn of the
leaf node. Its exploration factor is C = 1/

√
2. In order to

grow a deep enough tree for multi-action turns however, it
employs a technique called “bridge burning” in [7] – a re-
invention of move-by-move search [8]. We are keeping the
term “bridge burning” here, as the term “move” is ambiguous
in Hero Academy, and also because we are going to generalize
the concept of bridge burning to a different kind of tree in the
next subsection.

The idea of BB-MCTS is to split the time budget for the
current move search into five phases, equal to the number of
actions per turn. During each phase, the MCTS search proceeds
normally, but at the end of each phase, the most promising
action at the root is executed, leading to the root state for
the next phase. This can be implemented as the hard pruning
strategy shown in Figure 3.

Online Evolutionary Planning. The OEP baseline is as
described in Subsection II-B. In our experiments, we use the
same parameter settings as suggested in [7]: A population size
of 100, a kill rate of 0.5, a mutation rate of 0.1, and uniform
crossover and mutation operators.



Fig. 3: The “bridge burning” search strategy (illustration adapted from
[7]). (a) After phase 1, all branches but the best one are pruned at
the root. (b,c) After phases 2, 3, . . . n, pruning is applied at depth 2,
3, . . . n. The partial tree below the best branch is retained.

This algorithm is currently the best-performing approach
for multi-action turn-based games such as Hero Academy.
Although [7] shows it to be of similar strength to non-exploring
MCTS and BB-MCTS in the standard form of the game with
5 action points per turn, OEP was shown to scale better to the
tougher challenges of Hero Academy using 10 AP or more.
Our experiments include those exponentially more complex
variants as well.

C. Evolutionary MCTS

This subsection proposes our new search algorithm, Evolu-
tionary MCTS or EMCTS, as applied to playing multi-action
turn-based adversarial games. It combines the tree search
of MCTS with the genome-based approach of evolutionary
algorithms.

Instead of the vanilla MCTS tree seen in Figure 2, EMCTS
builds a tree as shown in Figure 4. Instead of starting from
an empty turn in the root, EMCTS starts from a complete
sequence of five (or more, depending on the domain) actions
– just like the genomes of OEP. Instead of growing a tree
that adds one action to the current sequence with every edge,
EMCTS grows a tree that mutates the current sequence with
every edge – using the same mutation operator as OEP. And
instead of using rollouts to complete the current turn and then
evaluating it as our MCTS baselines do, we simply evaluate
the solutions at the leaf nodes2. Backpropagation is unchanged.

EMCTS does not apply mutations randomly, but can choose
exactly which action in the sequence to mutate and which other
legal action to mutate it to3. While OEP turned the planning
of the action sequence into an optimization problem, EMCTS
thus takes the evolutionary optimization of the sequence and
turns it back into a planning problem. It can be seen as tree
search, but it can also be seen as a systematic exploration of
the mutation landscape of OEP, giving evolution the benefit of
lookahead.

Two questions need to be answered to fully flesh out EMCTS.
First, where does the root sequence come from? EMCTS needs

2Evaluating at the leaf nodes is a well-known MCTS variant that was
successfully employed for example in AlphaGo Zero and AlphaZero [3].

3No crossover operator is used.
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Fig. 4: Tree structure of Evolutionary MCTS. Nodes represent
complete action sequences (genomes), or the states resulting from
them. Edges represent the mutation of an atomic action within a
genome. Repairs can be necessary if those mutations can lead to
illegal genomes. After each node expansion, the evaluation function
is called instead of a rollout. (We use symbols to represent different
atomic actions.)

a starting solution to its search, just like EAs such as OEP
need a starting population of solutions. Different approaches
are possible – in this paper, we are using the Greedy Action
algorithm described above for a quick and greedy initialization
of the root. Second, what happens when a mutation leads
to an illegal action sequence? We could filter these out by
simulating every possible mutation in advance, but that would
be computationally expensive. Instead, like OEP we are taking
the classic evolutionary algorithm approach of using a repair
strategy – in this paper, we are using the Greedy Action AI
for repairs as well whenever necessary.

Note that the use of Greedy Action does not introduce
additional heuristic knowledge, as all algorithms compared
in this paper are working with the same evaluation function.
However, we noticed that like EMCTS, OEP can also be
significantly improved by using a Greedy Action repair policy
instead of a random repair policy. This results in higher quality
repairs on average. And just like EMCTS profits from a greedy
root genome, OEP can profit from filling 20% of the starting
population with Greedy Action sequences instead of random
ones4. This kick-starts the search with higher-quality starting
solutions. We are calling this new variant greedy OEP here,
as opposed to vanilla OEP with random repairs and a purely
random starting population as described in [28], [9], [7], and
include it in our experiments for a fair comparison.

Finally, EMCTS results in an even larger branching factor
than the vanilla MCTS variants. While the branching factor
in Hero Academy games between the MCTS baselines was
measured to be between 30 and 40, the branching factor of
the mutation tree of EMCTS is about 30 per action point – so
around 150 for the standard settings of the game with five action
points. We found that an effective way of dealing with this
is “bridge burning”, just as applied to the regular MCTS tree
by BB-MCTS. Instead of executing the most promising action
at the root after every search phase like BB-MCTS, EMCTS
executes the most promising mutation at the root after each
phase. The number of bridge burning phases, of successive

4This performed better than filling 1%, 10%, and 50% of the starting
population with Greedy Action sequences.



searches and prunings/mutations, is the only parameter of
EMCTS we tuned (see the following section). The MCTS
exploration factor was set to C = 0. The selection policy is
UCB as in the other MCTS variants.

IV. EXPERIMENTS AND RESULTS

This section describes our experimental setup for testing the
proposed Evolutionary MCTS, as well as the results.

A. Experimental Setup

We tested EMCTS in Hero Academy against Greedy Action,
Greedy Turn, non-exploring MCTS, BB-MCTS, and vanilla
OEP as proposed in [7], as well as the improved greedy OEP
as proposed in the previous section. All comparisons were
performed on the standard settings of the game with 5 action
points per turn, but also with altered rules allowing 10 AP
or even 15 AP per turn5. This increases the complexity of a
single turn exponentially, but gives a stronger indication of
generalizability to other games which can have higher numbers
of possible actions per turn. Furthermore, all comparisons were
done at different time budgets of 200 ms per turn, 1 second
per turn, and 5 seconds per turn. Each comparison consisted
of 400 games, with EMCTS playing 200 games as the first
player and 200 games as the second player. The map used is
shown in Figure 1. Games that had no winner after 200 turns
were counted as draws, i.e. half a win for each player.

All algorithms used the parameter settings described in
Section III. The number of “bridge burning” phases for EMCTS
was determined in preliminary experiments and set to 20 for
200 ms, 40 for 1 second, and 100 for 5 seconds per turn time
controls. The number of phases for BB-MCTS were identical
to the AP per turn, since it searches the type of tree shown in
Figure 2 and does not profit from deeper searches. As no other
algorithm was modified based on the AP per turn, EMCTS
was also not specifically tuned for different AP.

B. Results

Table I shows the performance of the proposed Evolutionary
MCTS against the five baselines and the improved greedy
Online Evolutionary Planning.

EMCTS is significantly stronger than all baselines (Greedy
Action, Greedy Turn, BB-MCTS, non-expl. MCTS, and vanilla
OEP) at all time controls and all numbers of action points
per turn. Its relative strength increases with the complexity of
the search problem as measured in action points per turn. The
newly proposed greedy OEP is a dramatic improvement over
vanilla OEP as described in [7], but still significantly weaker
than EMCTS at all action points at 200 ms per turn, and at all
action points except for the lowest setting (5) at 1 s and 5 s per
turn, where the two algorithms perform similarly. The results
therefore show that Evolutionary MCTS is highly effective at a

520 or even 25 AP as in [7] were not included. As the authors noted, such
high numbers of AP make it possible to win the game within very few turns,
and make the winner very strongly depend on who gets the first turn. Strength
differences between AIs are therefore harder to measure. More significant rule
changes would have to be made to balance the game with such high AP.

Opponent Action points per turn

5 10 15

200 ms per turn

Greedy Action [7] 87.6%*** 97.8%*** 98.3%***
Greedy Turn [7] 96.9%*** 100.0%*** 100.0%***
BB-MCTS [7] 68.6%*** 88.8%*** 93.0%***
non-expl. MCTS [7] 74.5%*** 91.8%*** 92.0%***
vanilla OEP [7] 77.8%*** 92.0%*** 94.8%***
greedy OEP [this paper] 60.6%** 59.5%** 65.3%***

1000 ms per turn

Greedy Action [7] 88.1%*** 98.5%*** 99.3%***
Greedy Turn [7] 92.8%*** 99.0%*** 100.0%***
BB-MCTS [7] 67.1%*** 90.3%*** 94.5%***
non-expl. MCTS [7] 65.5%*** 93.5%*** 97.3%***
vanilla OEP [7] 70.5%*** 84.8%*** 91.0%***
greedy OEP [this paper] 52.5% 58.8%* 61.8%***

5000 ms per turn

Greedy Action [7] 91.9%*** 99.0%*** 99.8%***
Greedy Turn [7] 78.1%*** 98.8%*** 100.0%***
BB-MCTS [7] 67.0%*** 90.3%*** 94.8%***
non-expl. MCTS [7] 56.9%* 94.8%*** 98.5%***
vanilla OEP [7] 69.0%*** 80.3%*** 87.5%***
greedy OEP [this paper] 51.4% 59.0%* 61.3%**

TABLE I: Win rates of EMCTS vs. all baselines at different time
controls. 400 games per data point. Asterisks indicate significantly
stronger play by EMCTS: *p < 0.05, **p < 0.01, ***p < 0.001

variety of time controls, and scales better with the complexity
of the domain than all other tested approaches.

Note that there is a tradeoff for “bridge burning” EMCTS
between doing more phases (pruning all but the best mutation
and continuing search from there), and having more time for
each phase (to identify the best mutation). With search time,
both the optimal number of phases as well as the optimal time
per phase seem to increase. The settings found to perform best
in our experiments have such high numbers of phases, and such
little time for them, that EMCTS could be seen as a type of
local search [38] or (1, λ)-Evolution Strategy [39]. At longer
time settings though, deeper trees can form, and EMCTS turns
into a new kind of genome-based planning, or evolution with
lookahead. These connections are worth exploring more deeply
in future work.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new algorithm for playing turn-
based adversarial games, where each turn consists of a
sequence of multiple actions. Such action sequences, common
in strategy games, lead to the challenge of extremely large
branching factors per turn. This is difficult to handle even for
selective tree search methods such as MCTS, which typically
search a tree of atomic actions, and specifically developed
evolutionary algorithms such as OEP, which optimize entire
action sequences.



Our new algorithm, called Evolutionary MCTS (EMCTS), is
based on the idea of combining the tree search of MCTS with
the sequence-based optimization of evolutionary algorithms.
Instead of searching a vanilla MCTS tree, EMCTS searches
a tree in which each edge mutates one action in a complete
action sequence. Experiments on the game Hero Academy
show that EMCTS convincingly outperforms several baselines
from the literature, including the state of the art OEP and an
improved variant of OEP introduced in this paper, at different
time settings and numbers of actions per turn. EMCTS also
scales better than any existing algorithm with the complexity
of the problem. It is therefore the currently strongest algorithm
for playing Hero Academy, and a promising candidate for other
turn-based multi-action games such as Civilization, XCOM,
Heroes of Might and Magic, or Into the Breach.

Several directions appear interesting for future work. First,
the comparison between Evolutionary MCTS and the baseline
algorithms could be deepened, including experiments with
different initialization and repair strategies, different evaluation
functions, more careful tuning of algorithm parameters such
as OEP’s population size, mutation rate, and kill rate, and
possible improvements to MCTS methods such as stronger
rollout policies. Second, various aspects of EMCTS could
be considered in more detail, such as speed optimizations
– it currently only evaluates roughly 20% as many action
sequences per second as OEP. Mutations for expansion could
for example be generated lazily in the tree nodes, and various
MCTS enhancements could be used to improve their ordering.
Third, the performance of EMCTS in other games could be
tested, such as strategy games with longer matches and larger
numbers of units. We are planning to apply it to Battle of
Polytopia, a mobile turn-based strategy game in which armies
can grow to 15 to 20 units or more in the late game. Unlike Hero
Academy, Battle of Polytopia does not allow for any unit to
move more than once per turn; however, additional complexity
arises from units whose actions themselves consist of several
atomic parts such as moving, attacking, and retreating. An
interesting challenge for the application to commercial games is
that the existence of a heuristic state evaluation function cannot
generally be assumed, requiring machine learning approaches.
Just like OEP, EMCTS could also be generalized to other
problems such as micro battles [29] or online build order
adaptation [30] in RTS games. In the former scenario, the
genomes would consist of a list of scripts representing simple
policies assigned to each unit, instead of a list of atomic
actions for the player. In the latter scenario, the genomes
would be candidate build orders, i.e. fixed-length sequences
of future units and buildings to construct. Fourth, the problem
of considering future actions of the opponent has not been
tackled successfully yet, neither by OEP nor by EMCTS.
Generalizing to larger classes of games will also require dealing
with indeterminism and partial observability. And last but not
least, the algorithmic similarities between Evolutionary MCTS
and certain local search algorithms and evolutionary algorithms
deserve further study, in order to further explore the idea of
“evolution with lookahead”.
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