
Opponent-Pruning Paranoid Search
Hendrik Baier

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

hendrik.baier@cwi.nl

Michael Kaisers
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

michael.kaisers@cwi.nl

ABSTRACT
This paper proposes a new search algorithm for fully observable, de-
terministic multiplayer games: Opponent-Pruning Paranoid Search
(OPPS). OPPS is a generalization of a state-of-the-art technique
for this class of games, Best-Reply Search (BRS+). Just like BRS+,
it allows for Alpha-Beta style pruning through the paranoid as-
sumption, and both deepens the tree and reduces the pessimism
of the paranoid assumption through pruning of opponent moves.
However, it introduces three parameters that allow for more fine-
grained control over the resulting search. Empirically, we show the
effectiveness of OPPS in Chinese Checkers variants with three, four,
and six players, where it outperforms its special case BRS+ as well
as classic maxn and Paranoid search. We conclude that OPPS opens
a promising research direction for search in multiplayer board and
video games, and beyond.

CCS CONCEPTS
• Computing methodologies→ Game tree search.

KEYWORDS
game tree search, multiplayer games

ACM Reference Format:
Hendrik Baier and Michael Kaisers. 2020. Opponent-Pruning Paranoid
Search. In International Conference on the Foundations of Digital Games
(FDG ’20), September 15–18, 2020, Bugibba, Malta. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3402942.3402957

1 INTRODUCTION
Fully observable two-player games with perfect information have
historically seen some of the greatest breakthroughs in artificial
intelligence – from Deep Blue’s victory over Garry Kasparov [2]
to AlphaGo’s victory over Ke Jie [14, 15]. To date, much less atten-
tion has been paid to game tree search for multiplayer games, i.e.
games with more than two players, with their additional challenges
[4, 10, 19]. Whereas multiplayer interactions are receiving signifi-
cant attention by the communities of (multi-agent) learning [1, 7]
and symbolic cooperative planning [22], research in game search
methods has yet to re-embrace this context.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG ’20, September 15–18, 2020, Bugibba, Malta
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8807-8/20/09. . . $15.00
https://doi.org/10.1145/3402942.3402957

In this paper, we propose a generalization of the state-of-the-art
search technique BRS+ [4]. In BRS+, which is in turn an improve-
ment to BRS [13] and based on the paranoid assumption that all
opponents of the root player form a coalition against them, only
one opponent of the root player is allowed to choose among all legal
moves, while the other opponents are restricted to the move ranked
highest by a static move ordering function. The search process
dynamically determines the player allowed to move freely as the
player who can currently make the strongest move against the root
player. Limiting search to branch only on one opponent at a time
drastically reduces the average branching factor of the search tree,
and somewhat softens the pessimism of the paranoid assumption,
while still enjoying an important advantage of every paranoid algo-
rithm: the opportunity to apply Alpha-Beta style pruning. Vanilla
BRS has been shown to be very effective in several multiplayer
games [6, 12, 13], and BRS+ has been shown to outperform vanilla
BRS in Four-Player Chess [4]. However, the design choices of BRS+
of allowing exactly one opponent to choose between all legal moves,
while all other opponents get only exactly one move option, are
somewhat ad hoc and inflexible.

The main contribution of this paper is a new multiplayer search
algorithm named Opponent-Pruning Paranoid Search (OPPS), which
generalizes BRS+ by turning these fixed design choices into algo-
rithm parameters. OPPS allows n1 opponents a branching factor
limit of l1, while other opponents are restricted to a lower branching
factor limit of l2. OPPS subsumes BRS+ as a special case, extending
it to a parameterized family of algorithms. We empirically show
that OPPS significantly outperforms both BRS+ as well as the clas-
sic maxn [10] and Paranoid [19] multiplayer search techniques in
Chinese Checkers variants with three, four, and six players. These
initial results demonstrate the potential of further refining search
techniques for multiplayer domains, in board games, video games,
and beyond.

The remainder of this paper is structured as follows: Section 2
describes our test domain of Chinese Checkers. Section 3 outlines
previous work and formalizes the problem. Section 4 introduces
OPPS, and Section 5 shows the results of various experiments that
test its performance. Finally, Section 6 concludes and discusses
directions for future work.

2 CHINESE CHECKERS
Chinese Checkers is a popular fully observable and deterministic
test domain for multiplayer search techniques [11, 13, 17], as well
as for General Game Playing [5, 21]. It can be played on a star-
shaped board by two, three, four, or six players, which allows for
convenient testing of how well algorithms scale with the number
of opponents. The most common Chinese Checkers board has 121
fields and is played with 10 pieces per player; in order to speed up
experiments, we follow previous work [11, 17] in using a slightly

https://doi.org/10.1145/3402942.3402957
https://doi.org/10.1145/3402942.3402957

FDG ’20, September 15–18, 2020, Bugibba, Malta Hendrik Baier and Michael Kaisers

checkers.JPG

Figure 1: Chinese Checkers, depicted here as the 6-player
starting position of a 6-piece game variant, provides a bench-
mark challenge for multiplayer search.

smaller board with 73 fields and 6 pieces per player, as shown in
Figure 1.

Each player starts in one of the corners of the board, and has
the goal of moving all of their pieces to the opposite corner. When
playing with six players, all corners are filled at the beginning;
when playing with four, two opposing corners are left empty; when
playing with three, every other corner is left empty. Pieces can
move in all six directions to an adjacent empty field, or jump over
an adjacent piece of any color if the field behind it is empty. Multiple
jumps are possible in one turn, leading to much faster progress if
the player can cleverly exploit the positioning of own and opponent
pieces. The first player to move all six pieces into their goal corner
wins the game1. Draws are not possible.

The search techniques discussed in this paper make use of both a
static board evaluation function, used to assign heuristic values from
the point of view of each player to leaf positions, as well as a static
move ordering function, used to speed up search by searching more
promising moves first – or restricting search to more promising
moves entirely. Experiments use a slightly simplified version of a
board evaluation from the literature [11], which adds up for each
player the distances of each piece to the farthest field of the goal
corner, and then normalizes those values so they add up to 1 over
all players. The move ordering is identical to the one used in the
same work [11], which orders all legal moves by how much closer
they bring the moved piece to the farthest field of the goal corner.
Moves are ordered by a score defined as ds − dt , where ds is the
distance before the move, and dt is the distance after the move.

1We also use the modification introduced in [11] that a player has won if their goal
corner is filled, regardless of the owner of the pieces, as long as the player has at least
one of their own pieces in the goal corner. This avoids opponents passively preventing
a player from winning by leaving one piece in their goal corner.

3 MULTIPLAYER SEARCH
This section presents the baselines for our experiments by outlining
existing search algorithms for fully observable, deterministic multi-
player games. The classic search techniques maxn and Paranoid are
discussed in Subsection 3.1, followed by BRS and its state-of-the-art
variant BRS+ in Subsection 3.2.

3.1 Maxn and Paranoid Search
Following notation from the closest related work on BRS+ [4],
we model the finite, deterministic games of perfect information
relevant to this work as tuples (N , S,Z ,A,T , P ,ui ,hi , s0), where
N = {1, . . . ,n} is the set of players; S is the set of game states;Z ⊆ S
is the set of terminal states; A is the set of moves; T : S ×A→ S is
the transition function mapping any state s and any move chosen
from the available moves A(s) ⊆ A to the successor state resulting
from taking the move; P : S → N maps any state to the player
to move; ui : Z → [0, 1] ⊆ R returns the utility of a terminal
state for Player i; hi : S → [0, 1] returns the heuristic evaluation
of a state for Player i (the static board evaluation discussed in the
previous section); and s0 ∈ S is the starting state of the game. The
tuple u(s) = (u1(s), . . . ,un (s)) refers to the utility of state s from
the point of view of all players; analogously for h(s).

The classic search algorithms formultiplayer games aremaxn [10]
and Paranoid [19]. Typically looking ahead to a fixed depth from
a given root state, maxn is based on the idea that every player, at
every internal node of the search tree, maximizes their own indi-
vidual utility when it is their turn. This utility Vd (s,a) of any move
a in any state s with a desired lookahead of depth d is defined as
follows [4]:

Vd (s,a) =

u(s ′) if s ′ ∈ Z
h(s ′) if s ′ < Z and d = 0
maxP (s)a′∈A(s ′)Vd−1(T (s ′,a′),a′) otherwise,

(1)
where maxi returns a tuple that maximizes the ith value, and s ′ =
T (s,a). It has been proven that maxn , when searching the entire
game tree, finds an equilibrium point of the game [10]. However,
with realistic time constraints usually only a search to a small
depth d can be completed, and a heuristic evaluation h(s) has to be
employed at the leaf nodes.

Maxn has two major weaknesses [13]: First, deep pruning like in
two-player Alpha-Beta search is not possible, leading to relatively
shallow trees2. This can be especially problematic in multiplayer
games, as the search might not even reach the next turn of the root
player, making longer-term planning impossible. Second, maxn can
be too optimistic, because it assumes all opponents are maximizing
only their own outcomes, without ever forming coalitions against
the root player.

Paranoid search takes the opposite approach of assuming that all
opponent players have formed a coalition against the root player r .
This effectively turns any multiplayer game into a two-player game
between r and the coalition, with the coalition’s turns consisting of
sequences of moves, which makes deep Alpha-Beta style pruning

2Limited forms of pruning can be possible in maxn [8, 16], but not deep pruning.

Opponent-Pruning Paranoid Search FDG ’20, September 15–18, 2020, Bugibba, Malta

possible [19]. The utility Vd (s,a) for Paranoid is defined as follows:

Vd (s,a) =



u(s ′) if s ′ ∈ Z
h(s ′) if s ′ < Z and d = 0
maxra′∈A(s ′)Vd−1(T (s ′,a′),a′) if s ′ < Z and d > 0

and P(s) = r
minra′∈A(s ′)Vd−1(T (s ′,a′),a′) if s ′ < Z and d > 0

and P(s) , r
(2)

Paranoid tends to outperform maxn in practice due to the deeper
searches enabled by Alpha-Beta style pruning. However, it suffers
from being overly pessimistic, which becomes more unrealistic the
deeper it searches, and the more opponents it is playing against.
In many games it is ultimately not possible to win if all opponents
form a coalition. As a consequence, experiments show that maxn
becomes relatively stronger with more players, and Paranoid per-
formance varies depending on which ply depth is reached (see
Subsection 5.2).

Several variations of maxn and Paranoid have been proposed
to tackle their weaknesses, for example by modelling coalitions in
different ways [9, 23], or by handling imperfect opponent models
[18, 20]. In this paper, we build on a line of work that "softens the
unrealistic maxn and paranoid assumptions" [13] through pruning,
such as in the algorithms BRS and BRS+.

3.2 BRS and BRS+
One of the most effective search techniques based on the paranoid
assumption is Best-Reply Search (BRS). Like Paranoid, BRS assumes
that all opponents are playing against the root player; however,
it restricts the move choices of this coalition. In vanilla BRS [13],
only the opponent with the strongest move against the root player
can act, while all other opponents have to pass. This means that
all opponent levels of the tree are virtually combined into one, and
the root player and the opponent coalition move alternatingly as if
playing a two-player game.

The restricted move choice of opponents in BRS fulfills two
functions. First, it allows for even deeper search andmore long-term
planning than in vanilla Paranoid search, and Alpha-Beta pruning
can also still be applied. Second, it weakens some of the negative
effects of the paranoid assumption: All opponents are still playing
against the root player, but their moves and therefore their strength
as a coalition are limited. This places BRS somewhere between the
optimism of maxn , where opponents never form coalitions, and
the pessimism of Paranoid, where all opponents always form a
coalition playing at full strength against the root player.

BRS has been shown to work well in practice in a variety of
multiplayer games [6, 12, 13]. However, it suffers from the drawback
that it leads to illegal game states in the tree when the game at
hand does not actually allow passing. The changed turn order also
leads to the unrealistic consequence of the root player making as
many moves as all other opponents combined during search. This
motivated the further development of BRS into BRS+ [4]. BRS+
assumes access to a move ordering function. Its basic idea is that
whenever an opponent does not have the strongest move against
the root player in a given state and would be forced to pass by
vanilla BRS, this opponent instead gets to play the move ranked

(a) The fully expanded game tree of a three-player toy game.

(b) The pruned tree as searched by BRS+ / OPPS(1,∞,1).

(c) Other parameter settings of OPPS lead to different levels of pruning – this
for example is the larger tree as searched by OPPS(1,∞,2).

(d) This smaller tree is searched by OPPS(0,x ,2) for any choice of x (or, in a
game with 3 players, equivalently by OPPS(2,2,x) for any x).

Figure 2: Illustration of Opponent-Pruning Paranoid Search
and the effects of its parameters on search tree size.

highest by the move ordering, which maintains valid game states
during search. This can be achieved without actually transforming
the tree, by manipulating the sets of available moves during the
search process in such a way that between two moves of the root
player, exactly one opponent gets free choice of move, while the
others play the highest ranked move. Subfigures 2(a) and (b) show
the effect of this pruning – 2(a) is a toy example of a game tree, and
2(b) is the corresponding BRS+ search tree in which at most one of
the opponents can make a free move (not ranked first by the move
ordering) between two turns of the root player. The highest ranked
moves are marked with bold lines in the illustration.

BRS+ can be considered state of the art for fully observable,
deterministic multiplayer games. Problems with illegal moves and

FDG ’20, September 15–18, 2020, Bugibba, Malta Hendrik Baier and Michael Kaisers

turn orders are avoided, for the price of requiring a move ordering
function, and being somewhat dependent on its quality.

4 OPPONENT-PRUNING PARANOID SEARCH
Opponent-Pruning Paranoid Search (OPPS), the search technique
proposed in this paper, is a natural generalization of BRS+. Between
any two turns of the root player, BRS+ essentially can be seen as
dividing the opponents of the root player into two groups: One
group of merely one opponent who is allowed to freely choose a
move – with the search process determining dynamically which
opponent this is – and another group subsuming all other oppo-
nents who are required to execute their highest ranked move. OPPS
generalizes this by introducing three parameters: n1 is the number
of opponents in the group with a wider move choice, with l1 being
the corresponding upper limit to their branching factor; similarly,
l2 is the upper limit to the branching factor for all other opponents,
such that l1 ≥ l2 w.l.o.g.3. Both l1 and l2 here refer to limits on the
number of top-ranked moves as ordered by the move ordering; e.g.,
l1 = 8 denotes that the first group chooses from the eight highest-
ranked moves, and l2 = 2 implies that group two only searches the
two highest-ranked moves, etc. BRS+ is the special case of OPPS
with n1 = 1, l1 = ∞ (no limit on the allowed number of moves), and
l2 = 1 (opponents in second group choose only their first-ranked
move). By varying these three parameters, however, OPPS can more
smoothly adapt both its degree of tree pruning as well as its degree
of paranoia, or flexibility of the opponent coalition, to whatever
is most effective in the domain at hand. We write OPPS(x , y, z) as
shorthand for OPPS with n1 = x , l1 = y, and l2 = z.

Pseudocode for OPPS is shown in Algorithm 1. It uses a variable
m, counting the number of moves taken between two root player
turns that would not be allowed for group two opponents – this
number is restricted by the algorithm to n1. Returning utilities and
heuristic evaluation from the point of view of the root player (lines
5 and 6), as well as maximizing these values if it is the root player’s
turn and minimizing them otherwise (line 18), makes sure the n1
opponents in group one are dynamically chosen in a paranoid way
as the opponents who currently have the strongest moves against
the root player.

Note that since OPPS is based on the paranoid assumption just
like BRS and BRS+, Alpha-Beta style pruning can still be applied.
As in the reference work on BRS+ [4], we have left this out of the
pseudocode for the sake of simplicity and readability, but it is used
in all experiments in the following section. Just like any variant of
Alpha-Beta search, OPPS can also easily be modified to return the
best move found together with its value.

Depending on its parameter settings, the tree searched by OPPS
can be made either larger or smaller than the tree BRS+ would
search. This is illustrated in Figure 2(c) and 2(d) with the trees
searched by OPPS(1,∞, 2) and OPPS(0,x ,2) for any x , respectively4.
In contrast to Subfigure 2(b), here the top two moves as ranked

3A further generalization to more than two groups, potentially determined by a
more involved learning algorithm, seems natural and is briefly discussed as future
research in Section 6. For ease of exposition we only discuss the direct extension to
two parameterized groups here.
4The parameter l1 is irrelevant in Figure 2(d), as there is only one group of opponents,
with a branching factor of l2 = 2.

Algorithm 1 Opponent-Pruning Paranoid Search
1: n1 ← size of group one
2: l1 ← branching factor limit for group one
3: l2 ← branching factor limit for group two
4: function OPPS(state s , depth d , countm, root player i)
5: if s ∈ Z then return ui (s)
6: else if d = 0 then return hi (s)
7: else
8: A′(s) ← A(s)
9: staticMoveSort(A′(s))
10: LetU ← ∅ be the set of child values
11: if P(s) = i thenm ← 0
12: else if m = n1 then A′(s) ← first l2 moves in A′(s)
13: else A′(s) ← first l1 moves in A′(s)
14: for a ∈ A′(s) do
15: s ′ ← T (s,a)
16: m′ ← if a < first l2 moves in A′(s) thenm + 1 elsem
17: U ← U ∪ {OPPS(s ′,d − 1,m′, i)}
18: return if P(s) = i then max(U) else min(U)
19: end function

by the move ordering function are marked in bold. The small dif-
ferences in tree size we can observe in this toy example can grow
exponentially with tree depth, as we empirically demonstrate in
Subsection 5.3.

5 EXPERIMENTAL RESULTS
This section describes our three sets of experiments for testing the
proposed Opponent-Pruning Paranoid Search in Chinese Checkers,
as well as the results.

In all experiments we compare two given multiplayer search
techniques. In an n-player game, there are 2n − 2 ways of assigning
these two techniques to the n players of the game such that both
techniques are present. In order to achieve a fair comparison, all of
our experiments were performed in batches containing one match
for each possible assignment. When we specify "a minimum of"
1000 matches played, this is therefore meant as, for each game
variant, the smallest number that is a) larger than 1000 and b) a
multiple of the number of player assignments in that game variant.

All experiments were conducted using a fixed time per move.
The search algorithms were therefore implemented with iterative
deepening, and the move returned by the last completed iteration
before time ran out was used in the match. All results are reported
as average winrates with 95% confidence intervals.

5.1 Performance of OPPS vs. BRS+
In our first set of experiments, OPPS was compared to the current
state-of-the-art multiplayer search technique BRS+, i.e. its special
case OPPS(1,∞,1). We used Chinese Checkers with three, four, and
six players, and at the time controls of 50 ms, 250 ms, 1000 ms, and
5000 ms per move. OPPS’ parameters n1, l1, and l2 were tuned for
each time control and domain by testing all combinations of n1 =
{0, 1, 2, 3}, l1 = {1, 2, . . . , 10,∞}, and l2 = {1, 2, . . . , 5}, where l1 ≥
l2. The best algorithm settings were then re-run with a minimum
of 1000 matches.

Opponent-Pruning Paranoid Search FDG ’20, September 15–18, 2020, Bugibba, Malta

Table 1: Performance of OPPS against BRS+ / OPPS(1,∞,1) in
Chinese Checkers with different numbers of players and at
different time settings.

players time per move

50 ms 250 ms 1000 ms 5000 ms
3 62.2%

±3.0%
53.1%
±3.1%

55.7%
±3.1%

60.3%
±3.0%

4 59.6%
±3.1%

56.2%
±3.1%

58.0%
±3.1%

74.3%
±2.8%

6 60.2%
±3.0%

76.5%
±2.6%

62.0%
±3.0%

73.2%
±2.8%

The results are shown in Table 1. As a generalization of BRS+,
OPPS can not be outperformed by it. In fact, it is significantly
stronger (p < 0.05) than BRS+ in all game variants and time controls
with the exception of the three-player game at 250 ms per move,
where the difference did not reach significance.

We can make two interesting observations. First, OPPS is able to
scale better than BRS+ with the number of opponents: Its average
performance over all time controls is 57.8% for three-player Chi-
nese Checkers, 62.0% for four players, and 68.0% for six players.
This shows that taming the branching factors of larger games is
increasingly effective, and is promising for future work on games
with even higher numbers of players. Second, the performance of
OPPS depends strongly on the time controls. A possible explana-
tion is that spending more search time, and therefore being able
to complete a search to depth x + 1 instead of only x , does not
always give a predictable performance boost to a paranoid algo-
rithm. In fact, when further evaluating BRS+ with depth-limited
instead of time-limited searches in Chinese Checkers with four
players5, we found that searching 3 plies deep wins only 51.6% of
matches against depth 2; depth 4 wins only 48.0% against depth 3;
but depth 5 wins 89.3% against depth 4. Depths 3 and 4 only add
an additional opponent turn, strongly pruned and evaluated by the
paranoid heuristic, while depth 5 adds the next turn of the root
player to the tree, which is much more important for planning. As
mentioned as a strength of BRS in the literature, "more MAX [root
player] nodes are visited along the search path, leading to more
long-term planning" [13]. Surprisingly, searches with depth 5 even
win 59.9% of games against depth 6, meaning the searches ending
in a root player move are here significantly stronger. This could
explain why OPPS at some time settings has a decisive advantage
over BRS+ by searching to a deeper, stronger depth – while at other
time settings, it may still search deeper on average, but not to a
stronger depth. A detailed analysis of this phenomenon is deferred
to future work.

5.2 Performance of OPPS vs. maxn and
Paranoid

BRS+ has been shown to be a significant improvement over BRS in
Four-Player Chess [4], and BRS in turn is generally stronger than
5These results are from a minimum of 500 matches each.

the classic techniques maxn and Paranoid, as demonstrated in a
variety of games in [11, 13]. Nevertheless, we wanted to make sure
that our tuning of OPPS against BRS+ had not led to overfitting, and
that OPPS was indeed still outperforming the classic techniques
maxn and Paranoid as well. In our second set of experiments, we
tested this at 250 ms per move in Chinese Checkers with three, four,
and six players. Every comparison is based on a minimum of 1000
matches. The results of OPPS, using the same parameter settings
that were found to be optimal against BRS+ in Subsection 5.1, are
reported in Table 2.

Table 2: Performance of OPPS against maxn and Paranoid in
Chinese Checkerswith different numbers of players. 250ms
per move.

players opponent

maxn Paranoid
3 95.2% ± 1.4% 74.1% ± 2.8%
4 88.0% ± 2.1% 88.8% ± 2.0%
6 71.2% ± 2.8% 74.2% ± 2.7%

OPPS is significantly stronger than both maxn and Paranoid in
all variants of the game (p < 0.0002). In line with previous results
for maxn vs. Paranoid [11], maxn gets stronger relative to both
Paranoid and OPPS the more opponents are present in the game –
probably because the paranoid assumption that all players form a
coalition against the root player becomes less and less realistic. It is
a naturally arising but open question for future work whethermaxn
could outperform OPPS in games with many more opponents. The
answer to this question is non-trivial, since at least given realistic
computational constraints there is an intricate interplay of branch-
ing factor, self-maximisation and root-minimisation in multi-player
search.

5.3 Tree Growth Comparison
The last set of experiments characterises and juxtaposes the be-
haviour of the multiplayer search techniques discussed in this paper
by comparing how fast search trees grow with search depth. The
evaluation is based on four-player Chinese Checkers, with a mini-
mum of 100 complete games using each search depth (as deep as
possible within a reasonably short timeframe) for each algorithm:
maxn , Paranoid, BRS+ / OPPS(1,∞,1), and two other variants of
OPPS, namely OPPS(1,5,1) and OPPS(2,8,5).

The resulting search tree sizes, averaged over all move searches
in those games, are plotted in Figure 3. It shows how much smaller
search trees with a given depth can get when moving from maxn
to Paranoid, due to Paranoid’s ability to use Alpha-Beta style prun-
ing. At depth two and three, Paranoid searches about an order of
magnitude fewer nodes. Moreover, BRS+ / OPPS(1,∞,1) provides
a drastic further reduction on top of this – it searches two orders
of magnitude fewer nodes than Paranoid at depth four, the highest
we could test for Paranoid. The additional plots for OPPS(1,5,1)
and OPPS(1,∞,2) show how the parameters of OPPS allow it to
fine-tune the tree sizes to what works best in the domain at hand.

FDG ’20, September 15–18, 2020, Bugibba, Malta Hendrik Baier and Michael Kaisers

As demonstrated here, OPPS can do both more and less pruning
than its special case BRS+.

In future work it would be worth studying the other salient
aspect of pruning Paranoid search trees – that they not only get
smaller, but less pessimistic in their move evaluations as well – and
which interactions may exist between these two effects and the
playing strength of OPPS.

FDG ’20, September 15–18, 2020, Bugibba, Malta Hendrik Baier and Michael Kaisers

As demonstrated here, OPPS can do both more and less pruning
than its special case BRS+.

In future work it would be worth studying the other salient
aspect of pruning Paranoid search trees – that they not only get
smaller, but less pessimistic in their move evaluations as well – and
which interactions may exist between these two effects and the
playing strength of OPPS.

0 1 2 3 4 5 6 7 8

100

101

102

103

104

105

search depth

av
er
ag
e
nu

m
be
ro

fn
od

es

max𝑛

Paranoid
BRS+ / OPPS(1,∞,1)

OPPS(1,5,1)
OPPS(1,∞,2)

Figure 3: Empirical tree growth of different search algo-
rithms in Chinese Checkers with 4 players.

6 CONCLUSIONS AND FUTURE RESEARCH
In this paper, we propose a new search technique for determinis-
tic multiplayer games with perfect information: Opponent-Pruning
Paranoid Search (OPPS), a generalization of the current state-of-the-
art technique BRS+. OPPS keeps some of the advantages of BRS+
such as Alpha-Beta style pruning, but allows for more fine-grained
control over the resulting search tree. We show that OPPS outper-
forms its special case BRS+ as well as classic max𝑛 and Paranoid
search in Chinese Checkers with three, four, and six players.

This opens several interesting directions for future research.
First, OPPS should be tested in several other multiplayer board and
video games. It could also be tested together with automatically
learned evaluation functions and move orderings instead of the
hand-coded ones used here and in previous work. Second, coalitions
could be studied in greater detail, with inspiration and baselines
taken from e.g. the Comixer [9] and MP-Mix [23] approaches. Third,
the idea of abstracting away some of your opponents – or some
of the opponents’ choices – in order to be able to focus more on
your own long-term planning is also promising to explore more
deeply in the context of Monte Carlo Tree Search (MCTS). In this
search framework, e.g. Alpha-Beta style pruning is not possible,
and the paranoid assumption has not been shown to work yet [11];
but abstraction and pruning – and unpruning – of moves have been
studied in some depth, leading to interesting connections (e.g. to
[3]).

Last but not least, several choices in the design of OPPS could
be generalized further, even though they are already allowing for
more flexibility and adaptability than in max𝑛 , Paranoid, and BRS+.

Instead of using only two groups of opponents with a fixed size
and a fixed branching factor limit each, we can easily imagine a
generalization to more groups, e.g. in an algorithm that makes the
choice of branching factor in every node of the tree dynamically
based on features of both the game state as well as the current
state of the search (e.g. depth in the tree, remaining search depth,
previously found "killer moves", etc). This idea could be applied
to other classes of multiplayer games as well, e.g. games featuring
indeterminism, simultaneous moves, or imperfect information. We
see OPPS only as a first step into this promising research direction.

ACKNOWLEDGMENTS
This work is part of the project Flexible Assets Bid Across Markets
(FABAM, project number TEUE117015), funded within the Dutch
Topsector Energie / TKI Urban Energy by Rijksdienst voor Onderne-
mend Nederland (RvO).

REFERENCES
[1] Stefano V Albrecht and Peter Stone. 2018. Autonomous agents modelling other

agents: A comprehensive survey and open problems. Artificial Intelligence 258
(2018), 66–95.

[2] Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu. 2002. Deep Blue.
Artificial Intelligence 134, 1-2 (2002), 57–83.

[3] Guillaume M. J. B. Chaslot, Mark H. M. Winands, Jaap van den Herik, Jos W.
H. M. Uiterwijk, and Bruno Bouzy. 2008. Progressive Strategies for Monte-Carlo
Tree Search. New Mathematics and Natural Computation 4, 03 (2008), 343–357.

[4] Markus Esser, Michael Gras, Mark H. M. Winands, Maarten P. D. Schadd, and
Marc Lanctot. 2013. Improving Best-Reply Search. In 8th International Conference
on Computers and Games (CG 2013) (Lecture Notes in Computer Science), H. Jaap
van den Herik, Hiroyuki Iida, and Aske Plaat (Eds.), Vol. 8427. Springer, 125–137.
https://doi.org/10.1007/978-3-319-09165-5

[5] Hilmar Finnsson. 2012. Simulation-based General Game Playing. Ph.D. Disserta-
tion. School of Computer Science, Reykjavik University.

[6] Michael Gras. 2012. Multi-Player Search in the Game of Billabong. Master’s thesis.
Department of Knowledge Engineering, Maastricht University.

[7] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de
Cote. 2017. A Survey of Learning in Multiagent Environments: Dealing with
Non-Stationarity. CoRR abs/1707.09183 (2017). arXiv:1707.09183

[8] Richard E. Korf. 1991. Multi-Player Alpha-Beta Pruning. Artificial Intelligence 48,
1 (1991), 99–111.

[9] Ulf Lorenz and Tobias Tscheuschner. 2006. Player Modeling, Search Algorithms
and Strategies in Multi-player Games. In 11th International Conference on Ad-
vances in Computer Games (ACG 2005) (Lecture Notes in Computer Science), H. Jaap
van den Herik, Shun-chin Hsu, Tsan-sheng Hsu, and H. H. L. M. Donkers (Eds.),
Vol. 4250. Springer, 210–224. https://doi.org/10.1007/11922155_16

[10] Carol Luckhart and Keki B. Irani. 1986. An Algorithmic Solution of N-Person
Games. In 5th National Conference on Artificial Intelligence, Tom Kehler (Ed.).
Morgan Kaufmann, 158–162.

[11] Pim A. M. Nijssen. 2013. Monte-Carlo Tree Search for Multi-Player Games. Ph.D.
Dissertation. Department of Knowledge Engineering, Maastricht University.

[12] Pim A. M. Nijssen and Mark H. M. Winands. 2013. Search Policies in Multi-Player
Games. ICGA Journal 36, 1 (2013), 3–21.

[13] Maarten P. D. Schadd and Mark H. M. Winands. 2011. Best Reply Search for
Multiplayer Games. IEEE Transactions on Computational Intelligence and AI in
Games 3, 1 (2011), 57–66.

[14] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with Deep
Neural Networks and Tree Search. Nature 529, 7587 (2016), 484–489.

[15] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. 2017. Mastering the Game of Go without
Human Knowledge. Nature 550, 7676 (2017), 354–359.

[16] Nathan R. Sturtevant. 2003. Last-Branch and Speculative Pruning Algorithms for
Maxn. In 18th International Joint Conference on Artificial Intelligence (IJCAI 2003),
Georg Gottlob and Toby Walsh (Eds.). Morgan Kaufmann, 669–678.

[17] Nathan R. Sturtevant. 2008. An Analysis of UCT in Multi-Player Games. ICGA
Journal 31, 4 (2008), 195–208.

Figure 3: Empirical tree growth of different search algo-
rithms in Chinese Checkers with 4 players.

6 CONCLUSIONS AND FUTURE RESEARCH
In this paper, we propose a new search technique for determinis-
tic multiplayer games with perfect information: Opponent-Pruning
Paranoid Search (OPPS), a generalization of the current state-of-the-
art technique BRS+. OPPS keeps some of the advantages of BRS+
such as Alpha-Beta style pruning, but allows for more fine-grained
control over the resulting search tree. We show that OPPS outper-
forms its special case BRS+ as well as classic maxn and Paranoid
search in Chinese Checkers with three, four, and six players.

This opens several interesting directions for future research.
First, OPPS should be tested in several other multiplayer board and
video games. It could also be tested together with automatically
learned evaluation functions and move orderings instead of the
hand-coded ones used here and in previous work. Second, coalitions
could be studied in greater detail, with inspiration and baselines
taken from e.g. the Comixer [9] and MP-Mix [23] approaches. Third,
the idea of abstracting away some of your opponents – or some
of the opponents’ choices – in order to be able to focus more on
your own long-term planning is also promising to explore more
deeply in the context of Monte Carlo Tree Search (MCTS). In this
search framework, e.g. Alpha-Beta style pruning is not possible,
and the paranoid assumption has not been shown to work yet [11];
but abstraction and pruning – and unpruning – of moves have been
studied in some depth, leading to interesting connections (e.g. to
[3]).

Last but not least, several choices in the design of OPPS could
be generalized further, even though they are already allowing for
more flexibility and adaptability than in maxn , Paranoid, and BRS+.

Instead of using only two groups of opponents with a fixed size
and a fixed branching factor limit each, we can easily imagine a
generalization to more groups, e.g. in an algorithm that makes the
choice of branching factor in every node of the tree dynamically
based on features of both the game state as well as the current
state of the search (e.g. depth in the tree, remaining search depth,
previously found "killer moves", etc). This idea could be applied
to other classes of multiplayer games as well, e.g. games featuring
indeterminism, simultaneous moves, or imperfect information. We
see OPPS only as a first step into this promising research direction.

ACKNOWLEDGMENTS
This work is part of the project Flexible Assets Bid Across Markets
(FABAM, project number TEUE117015), funded within the Dutch
Topsector Energie / TKI Urban Energy by Rijksdienst voor Onderne-
mend Nederland (RvO).

REFERENCES
[1] Stefano V Albrecht and Peter Stone. 2018. Autonomous agents modelling other

agents: A comprehensive survey and open problems. Artificial Intelligence 258
(2018), 66–95.

[2] Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu. 2002. Deep Blue.
Artificial Intelligence 134, 1-2 (2002), 57–83.

[3] Guillaume M. J. B. Chaslot, Mark H. M. Winands, Jaap van den Herik, Jos W.
H. M. Uiterwijk, and Bruno Bouzy. 2008. Progressive Strategies for Monte-Carlo
Tree Search. New Mathematics and Natural Computation 4, 03 (2008), 343–357.

[4] Markus Esser, Michael Gras, Mark H. M. Winands, Maarten P. D. Schadd, and
Marc Lanctot. 2013. Improving Best-Reply Search. In 8th International Conference
on Computers and Games (CG 2013) (Lecture Notes in Computer Science), H. Jaap
van den Herik, Hiroyuki Iida, and Aske Plaat (Eds.), Vol. 8427. Springer, 125–137.
https://doi.org/10.1007/978-3-319-09165-5

[5] Hilmar Finnsson. 2012. Simulation-based General Game Playing. Ph.D. Disserta-
tion. School of Computer Science, Reykjavik University.

[6] Michael Gras. 2012. Multi-Player Search in the Game of Billabong. Master’s thesis.
Department of Knowledge Engineering, Maastricht University.

[7] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de
Cote. 2017. A Survey of Learning in Multiagent Environments: Dealing with
Non-Stationarity. CoRR abs/1707.09183 (2017). arXiv:1707.09183

[8] Richard E. Korf. 1991. Multi-Player Alpha-Beta Pruning. Artificial Intelligence 48,
1 (1991), 99–111.

[9] Ulf Lorenz and Tobias Tscheuschner. 2006. Player Modeling, Search Algorithms
and Strategies in Multi-player Games. In 11th International Conference on Ad-
vances in Computer Games (ACG 2005) (Lecture Notes in Computer Science), H. Jaap
van den Herik, Shun-chin Hsu, Tsan-sheng Hsu, and H. H. L. M. Donkers (Eds.),
Vol. 4250. Springer, 210–224. https://doi.org/10.1007/11922155_16

[10] Carol Luckhart and Keki B. Irani. 1986. An Algorithmic Solution of N-Person
Games. In 5th National Conference on Artificial Intelligence, Tom Kehler (Ed.).
Morgan Kaufmann, 158–162.

[11] Pim A. M. Nijssen. 2013. Monte-Carlo Tree Search for Multi-Player Games. Ph.D.
Dissertation. Department of Knowledge Engineering, Maastricht University.

[12] Pim A. M. Nijssen and Mark H. M. Winands. 2013. Search Policies in Multi-Player
Games. ICGA Journal 36, 1 (2013), 3–21.

[13] Maarten P. D. Schadd and Mark H. M. Winands. 2011. Best Reply Search for
Multiplayer Games. IEEE Transactions on Computational Intelligence and AI in
Games 3, 1 (2011), 57–66.

[14] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with Deep
Neural Networks and Tree Search. Nature 529, 7587 (2016), 484–489.

[15] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. 2017. Mastering the Game of Go without
Human Knowledge. Nature 550, 7676 (2017), 354–359.

[16] Nathan R. Sturtevant. 2003. Last-Branch and Speculative Pruning Algorithms for
Maxn. In 18th International Joint Conference on Artificial Intelligence (IJCAI 2003),
Georg Gottlob and Toby Walsh (Eds.). Morgan Kaufmann, 669–678.

[17] Nathan R. Sturtevant. 2008. An Analysis of UCT in Multi-Player Games. ICGA
Journal 31, 4 (2008), 195–208.

https://doi.org/10.1007/978-3-319-09165-5
https://arxiv.org/abs/1707.09183
https://doi.org/10.1007/11922155_16

Opponent-Pruning Paranoid Search FDG ’20, September 15–18, 2020, Bugibba, Malta

[18] Nathan R. Sturtevant and Michael H. Bowling. 2006. Robust Game Play against
Unknown Opponents. In 5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2006), Hideyuki Nakashima, Michael P. Wellman,
Gerhard Weiss, and Peter Stone (Eds.). ACM, 713–719. https://doi.org/10.1145/
1160633.1160761

[19] Nathan R. Sturtevant and Richard E. Korf. 2000. On Pruning Techniques for
Multi-Player Games. In 17th National Conference on Artificial Intelligence and
Twelfth Conference on on Innovative Applications of Artificial Intelligence, Henry A.
Kautz and Bruce W. Porter (Eds.). AAAI Press / The MIT Press, 201–207.

[20] Nathan R. Sturtevant, Martin Zinkevich, and Michael H. Bowling. 2006. Prob-
Maxn: Playing N-Player Games with Opponent Models. In The 21st National
Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial

Intelligence Conference. AAAI Press, 1057–1063.
[21] Mandy J. W. Tak, Mark H. M. Winands, and Yngvi Björnsson. 2012. N-Grams and

the Last-Good-Reply Policy Applied in General Game Playing. IEEE Transastions
on Computational Intelligence and AI in Games 4, 2 (2012), 73–83.

[22] Alejandro Torreño, Eva Onaindia, Antonín Komenda, and Michal Štolba. 2017.
Cooperative Multi-Agent Planning: A Survey. ACM Comput. Surv. 50, 6 (2017),
84:1–84:32.

[23] Inon Zuckerman and Ariel Felner. 2011. The MP-MIX Algorithm: Dynamic
Search Strategy Selection in Multiplayer Adversarial Search. IEEE Transactions
on Computational Intelligence and AI in Games 3, 4 (2011), 316–331. https:
//doi.org/10.1109/TCIAIG.2011.2166266

https://doi.org/10.1145/1160633.1160761
https://doi.org/10.1145/1160633.1160761
https://doi.org/10.1109/TCIAIG.2011.2166266
https://doi.org/10.1109/TCIAIG.2011.2166266

	Abstract
	1 Introduction
	2 Chinese Checkers
	3 Multiplayer Search
	3.1 Max-n and Paranoid Search
	3.2 BRS and BRS+

	4 Opponent-Pruning Paranoid Search
	5 Experimental Results
	5.1 Performance of OPPS vs. BRS+
	5.2 Performance of OPPS vs. max-n and Paranoid
	5.3 Tree Growth Comparison

	6 Conclusions and Future Research
	Acknowledgments
	References

