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Abstract. Monte Carlo tree search (MCTS) is one of the most capa-
ble online search algorithms for sequential planning tasks, with sig-
nificant applications in areas such as resource allocation and transit
planning. Despite its strong performance in real-world deployment,
the inherent complexity of MCTS makes it challenging to understand
for users without technical background. This paper considers the use
of MCTS in transportation routing services, where the algorithm is
integrated to develop optimized route plans. These plans are required
to meet a range of constraints and requirements simultaneously, fur-
ther complicating the task of explaining the algorithm’s operation in
real-world contexts. To address this critical research gap, we intro-
duce a novel computation tree logic-based explainer for MCTS. Our
framework begins by taking user-defined requirements and translat-
ing them into rigorous logic specifications through the use of lan-
guage templates. Then, our explainer incorporates a logic verifica-
tion and quantitative evaluation module that validates the states and
actions traversed by the MCTS algorithm. The outcomes of this anal-
ysis are then rendered into human-readable descriptive text using a
second set of language templates. The user satisfaction of our ap-
proach was assessed through a survey with 82 participants. The re-
sults indicated that our explanatory approach significantly outper-
forms other baselines in user preference.

1 Introduction

Artificial Intelligence (Al) is now intricately woven into the fabric
of our daily lives. AI’s influence extends into virtually every sec-
tor, redefining the way we work, learn, and interact with the world
around us. For example, Al algorithms play a pivotal role in person-
alized recommendations, virtual social networks, medical diagno-
sis, transportation management, and city services [12, 26, 28, 2]. As
Al becomes ubiquitous, explainability of the underlying algorithmic
processes is imperative for fostering trust and ensuring transparency
in automated decision-making processes [31, 29], thereby enabling
stakeholders to comprehend and effectively scrutinize autonomous
and data-driven systems. The importance of developing transparent
and explainable Al systems has been highlighted and, to some ex-
tent, mandated in public policy—both the European Union and the
US have highlighted its importance through legislation [8, 33].

The field of Explainable Al has acknowledged this challenge and
developed several novel and effective approaches. Indeed, there are
several well-known approaches for interpreting learning-based meth-
ods, i.e., methods that use historical data to make estimates about a
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Figure 1. A running example of a trip request and the recommended route
plan. Available vehicles are denoted by bus icons and the outstanding
request is represented by the passenger icon. Stops, marked by route

numbers, will be visited by vehicles with corresponding IDs.

dependent variable as a function of independent variables, such as
SHAP [25] and LIME [34]. Unfortunately, there is a major lack of
approaches that can explain sequential decision-making. Such Al-
based methods significantly differ from standard supervised learning
since the algorithms for sequential decision-making conduct a search
through a complex combinatorial space of trajectories (i.e., sequen-
tial states and actions) to find optimal policies; as a result, standard
approaches that can be used to explain supervised learning are not
directly applicable to sequential decision making.

In this paper, we focus on online search, which is at the core of
recent advances in autonomous planning and decision-making [35].
Specifically, we focus on Monte Carlo tree search (MCTS) [22], an
online and anytime sampling-based general search algorithm that
has played a critical role in achieving state-of-the-art performance
in games such as Chess and Go [38] and also in many real-world
domains such as emergency response [32], public transit [42], and
supply chain management [13]. While Baier and Kaisers highlight
the need for explainable search [6, 7], there are no well-established
approaches for explaining decisions computed by MCTS.

To ground our framework, we use a complex real-world domain
instead of board games. In particular, we choose public transporta-
tion, where algorithmic and data-driven approaches have shown par-
ticularly promising results [36, 42]. However, transportation has tra-
ditionally involved human operators optimizing decisions manually;
as a result, Al-based approaches are often viewed with skepticism
even when they demonstrate higher efficiency. This lack of trust pri-
marily stems from a lack of understanding of the algorithms.

Consider a scenario in dynamic vehicle routing. As illustrated in
Figure 1, the path planning algorithm is responsible for assigning a
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Figure 2. Overview of the CTL-based explainer.

passenger request to one of three available vehicles. The algorithm is
equipped with real-time information, including the current locations
of all vehicles and their availability status. While generating plans,
the algorithm is guided by specific objectives, such as maximizing
the overall percentage of completed trips. Moreover, it is provided
with certain non-negotiable constraints that must not be violated dur-
ing the planning process. Leveraging its internal mechanisms, the
planning algorithm generates the best approximation to an optimal
solution it can find and presents the user with the corresponding re-
sult, which is to assign the passenger to vehicle 3 (blue).

In this case, the algorithm is a black-box when presented to
users such as route dispatchers who may not have a technical back-
ground in search algorithms. Furthermore, the dispatchers remain un-
informed about the potential future status of other vehicles in the
vicinity. Without this knowledge, they are unable to determine if al-
ternative nearby vehicles could provide better solutions to the current
routing problem, which might also significantly benefit future opera-
tions. We tackle this challenge by developing computation tree logic
(CTL)-based explainable MCTS. Particularly, our focus is on non-
technical route dispatchers as explainees, who are seeking to under-
stand the decision-making outcomes. They may raise inquiries such
as “why was this particular action recommended?” or “why wouldn’t
this alternative action be viable?”

Our explainer categorizes user queries into three varieties: factual
queries that provide insights into the algorithm’s decisions derived
from states and actions in the search tree, contrastive queries that
compare user-suggested decisions with the algorithm’s recommen-
dations by identifying CTL violations or inferior rewards, and al-
ternative plan explanations that involve extending the search to ad-
ditional options. Specifically, our explainer first leverages language
templates to capture user queries about the outcomes of the MCTS
algorithm. This design choice considers the needs of non-technical
dispatchers by helping them in formulating the most relevant ques-
tions, excluding queries that do not directly relate to the core aspects
of the planning problem. Second, each templated natural language
query is converted into a logic specification by a many-to-many map-
ping process. For instance, consider a user query such as, “Based on
the suggested vehicle assignment, is it expected that the passenger
will be dropped off too late?” Our explainer translates this query into
CTL as ¢ = AG (twt‘ > tallowed)-

Third, our explainer triggers a formal specification checking
mechanism of CTL that takes logic formulas as input and traverses
the MCTS tree to generate results. Fourth, the checking and verifica-
tion results obtained in this step are then translated back into natu-
ral language. This conversion, again, leverages pre-defined language

templates that are designed to ensure the output is understandable
to the user. Continuing from the previous example, a response to
the query would be: “The passenger has specified a desired drop-
off time of 5:33 PM. The route planning algorithm has simulated
approximately 150 potential future scenarios and requests. Potential
Late Arrival: There’s a chance that the passenger might encounter
a delay in their drop-off time. This expected delay averages around
23 minutes. The primary reason for this delay is that the proposed
vehicle is expected to make stops at about 4 other locations prior to
reaching the passenger’s drop-off point. However, the delay can be
as short as 19 minutes or extend up to 27 minutes. The percentage of
times the suggested vehicle doesn’t meet the desired drop-off time is
about 10%.” In summary, we offer the following contributions:

e Our explainer dynamically associates non-technical user queries
with three types. These queries, containing free variables, are then
converted into CTL formulas for further analysis.

e Our explainer utilizes CTL semantics to determine the satisfiabil-
ity of the logic query. It then translates these results into natural
language using linguistic templates, ensuring the algorithm’s ex-
planations are easily comprehensible and accessible.

e We recruited a total of 82 participants for the study (approved by
the Institutional Review Board (IRB)). The CTL-based explainer
significantly outperforms the two baseline methods in reported un-
derstanding, satisfaction, completeness, and reliability.

2 Sequential Planning in Public Transit

In this section, we introduce the underlying Markov Decision Pro-
cess (MDP) that models our specific use case in public transit, and
defines the search space for our MCTS implementation. Following
related work [19, 42] in using MDPs for transit planning, we de-
fine a transit planning task II as the tuple (S, A, T, R, ), where S
is the set of environment states, A the set of available actions, and
T'(st, at, st+1) defines the probabilities of moving from state s; to
state s¢+1 under action a;, where every transition to a next state im-
plies a new predicted request. The reward function R(s, a) and the
discount factor - assign a scalar reward for taking action a in state s.

A state s in the transit planning task is defined by the tuple
0,7V, {R‘V‘ 1), where 6 denotes the current route plans for all ve-
hicles, r is an outstanding request, V' denotes the locations of all ve-
hicles, and {R‘V‘} is a list of assigned requests to each vehicle [42].
We denote the state at time ¢ with s, = (0, 7¢, V4, {R‘tv‘ }). An ac-
tion a; at time ¢ involves assigning an outstanding trip request 7~/ to a
vehicle v*. A transit service request 77 is defined by: the time the re-
quest was made ¢/, requested pickup time ¢%,, requested drop-off time
tfl, pickup location %, and drop-off location 17, as well as its current
status u/ € {waiting, assigned, in-transit, dropped-off}. Each tran-
sit vehicle v* € V has a fixed capacity ¢’ and an occupancy p* that
varies based on its current route plan. The designated route plan of
each vehicle is denoted as %, specifying a list of future locations that
the vehicle is scheduled to visit.

We use MCTS [22] as the decision making algorithm, mapping
the current state s; to the next action to take a; with the help of
sampling-based planning over the MDP model described above. Our
transit scenario operates within a dynamic environment where re-
quests can be made at any moment. When a new request r is initi-
ated by a passenger, the planning algorithm is engaged on-the-fly to
generate a new action to accommodate this request. This time point
is referred to as a “decision epoch” [21, 42], where each decision
epoch addresses a new planning problem independently. Specifically,



Table 1.

Examples of queries, state variables, and the completed CTL formulas.

Query Type

Query Example

State Variable CTL Formula

T1: Factual query

Q1: Is it expected that the [passenger] will be
[picked up] on time? (Efficiency)

test estimated travel time; ¢, request picked
up time; ¢, allowed time window

¢1: AG (tesl < (tp +ta))

T2: Contrastive query

Q2: Why wasn’t the passenger assigned to [this
alternative vehicle]? (Efficiency & Hard constraint)

tq request drop off time; teg; tp: ta @3 1 AG (test < (ta +ta))

T3: Query with tree
expansion

Q3: Can you tell me more about [this alternative
route]? (Efficiency & Hard constraint & Soundness)

vy total travel time; v, reasonable timeframe;
tests tps tds tas Vel Vo

P13 P25 P33

\
v vehicle capacity; v, vehicle occupancy; ‘ ¢15 P2 : AG (v, < ve);
‘ b4 : AG (Un < 'Un)

Explanation Process

Step 1. User Queries to Logic Formulas
Obtain queries: Q = {q1,q2, ..., qn}

* Fill free variables in query template.

* Identify specification type from query.
Output: CTL formulas to be checked.

e.g. ¢1(varl,var2) = AG (tese < tanowea)

Step 2. CTL Verification and

Step 3. Generating Explanations
a. Factual & contrastive queries.
* node F ¢;; node ¥ ¢,
*  Verifies actions and states in
original search tree.
b. Queries that require path expansion.
*  Preforms additional search
based on query variables.

Quantitative Evaluation
¢ CTL evaluation results.
o g =eval(p;) Vp; €D
* Quantitative evaluation results.
* Delay percentage & range.
*  Average, upper & lower bound.

i

a. original search tree  b. additional search

Step 4. Template-Based Natural Language Explanations

¢ Obtain E; = {&y, &, ..., &1} Vq; € Q from Step 3.

* Convert to natural language explanations based on pre-defined templates.

e.g. there’s a 50% chance that passenger 1 might encounter a [19 minutes] to [27 minutes] delay in
their drop-off time.

Figure 3. Illustration of the complete explanation process.

MCTS seeks to find or approximate the optimal action a: that al-
locates the current request to one of the vehicles v* € V. Poten-
tial actions in this use case must adhere to two hard constraints: the
capacity constraint pi < ¢*, Vu; € V and the timing constraint

J o J (s
Tropped-oft rinm“sit’ < Thax, Vr? € R, where p; is the number

of passengers for vehicle v* at time ¢ and Tyna is the maximum al-
lowed en-route time for a trip request, rﬁropped_oﬂ- is the actual drop off
time and rfr'l_lmnm is the actual pick up time of request 7. A request is
successfully assigned to a vehicle if the action complies with all hard
constraints, which can extend beyond the above and are explicitly de-
fined by the user or the algorithm engineer prior to the planning task.
To simplify the problem, we do not consider swapping route plans
between vehicles. Therefore, the action space of each vehicle is re-
stricted to one per single request by inserting the pickup and drop-off
locations of r into its existing route at the index where the time used
to travel between two stops is minimized. Assume that there are |V|
vehicles available, the maximum number of potential actions for as-
signing a particular request is |V/|.

The reward of the MCTS planning algorithm is R(s,a) = 71 -
% +72- ZZN:tlJrNd (t;? - riln-lransil) +3- Ef\f:% (tfi - Téropped-off)?
where NV, is the total number of in transit requests, Nq is the number
of dropped off requests, v1, 2, and 3 are weights.

3 CTL-Based Explainable MCTS

The goal of CTL [14]-based explainable MCTS is to help users (e.g.,
transit operators) understand the relationship between the system
state, the desired outcome, non-negotiable constraints, and the route
plan produced by MCTS. In each decision epoch of the planning
task II, the user is presented with the current system state s; and the
action a; proposed by MCTS. The user also has knowledge of a pre-

defined set of hard constraints that the recommended actions must
consistently adhere to. Given this information, the user poses a set of
queries, denoted as Q = {q1, g2, - - - }. Following the running exam-
ple in Figure 1, one such query can be: “Why wasn’t the passenger
assigned to vehicle 2’s route?” (Q2, Table 1).

Given the query, the explainer’s goal is to provide explanations,
denoted as =, concerning recommended actions a; in response to
specific queries. The explainer must deduce answers to these ques-
tions based on criteria that include the goal of the search, the strin-
gent state requirements such as vehicle capacity violations, and user-
proposed criteria like additional efficiency requirements. In Figure 3,
we provide a overview of this process. In the following sections, we
describe the detailed methods employed to derive this response from
the MCTS search tree.

3.1 Formulating User Queries

Dispatchers lacking technical knowledge in MCTS can inquire about
various aspects of the planning result, such as constraint compliance,
route plan efficiency, and its soundness. To address these varying in-
terests, we organize user queries into three distinct categories. Table 1
demonstrates one example query of each category. In principle, our
explanation framework can handle any query that can be structured
in this way. In our examples, free variables are indicated by brackets.
Furthermore, these queries are initially left empty and are associated
with predefined criteria such as efficiency and soundness. When a
user submits a query in natural language, the first step involves iden-
tifying the completed variables within the query. For instance, if a
query asks about an alternative action, we map the free variables in
the query to the corresponding state variables of the alternative ac-
tion in question. Additionally, we incorporate these state variables
and the query criteria into automatically generated CTL formulas,
denoted as ® = {¢1, P2, - - - }. In Section 3.3, we describe how vari-
ables in queries are processed, incorporated into CTL formulas, and
how their handling differs within the search tree.

3.2 CTL Verification and Quantitative Evaluation

Before discussing how specific queries and criteria are translated into
CTL, we detail our approach to employing the branching-time logic
extensively applied in model checking [10]. The CTL state quanti-
fiers evaluate the breadth of the computation tree, where the A (for
all) operator examines every child of a given state, and the E (exists)
operator focuses on at least one child, requiring the formula’s valid-
ity for any one of them. In contrast, the path quantifiers consider the
tree’s depth. The X (next) operator checks whether a specified con-
dition holds in the next immediate state. The F' (future) operator is
concerned with a condition’s eventual occurrence and the G (glob-
ally) operator requires that a condition holds true in all future states.
The syntax of CTL is shown in Definition 1, where p is an atomic
proposition, incorporating relational and arithmetic operators.
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Figure 4. Illustration of different types of queries.

Definition 1 (Syntax of CTL formulas).

=T |L|p|-®|PAD|DVSD |
AX® | EX® | AFD | EF® | AGY | EG®

Given a CTL formula and a MCTS search tree, the process of ver-
ifying whether the nodes and paths satisfy the formula is conducted
through CTL semantics, known as CTL verification or specification
checking. The input for this specification checking module is a finite
sequence of possible states of the system {s;}, wherei¢ < L and
L represents the length of the longest path within the data structure.
This sequence describes discrete transitions s; M s;4-1 with a time
delay between two successive states, such that ;11 = t; + d [1]. In
our planning task, the search tree is conceptualized as a Kripke struc-
ture [23] where nodes symbolize states s; in the decision-making
process, and edges represent the available choices or actions at each
node, leading to the next state s;41 in the sequence. The CTL specifi-
cation checking module yields a binary outcome, indicating whether
the evaluated condition is satisfied or violated. To provide a quan-
titative assessment of each state where the CTL formula evaluates
to false, we record the specific details of the violation, such as the
extent of delay in minutes, at that particular state. This state is then
marked with a flag to indicate a violation. This approach facilitates
a thorough identification of non-compliant states, both qualitatively
and quantitatively. The described process corresponds to lines 5-6 of
Algorithm 2. It also enables for a more detailed transition to natural
language explanations in subsequent processes, ensuring a compre-
hensive understanding of each violation.

3.3 Mapping Queries to CTL Formulas

Factual Queries — “Why?” Factual queries relate to reasons that
indicate why a particular action is recommended [15, 37]. We specif-
ically address the following types of questions in which individu-
als seek to determine whether the specific user-specified criteria will
be met. For instance, a common question is, “Based on the current
vehicle assignment, is it expected that passenger 1 will be dropped
off too late?” For such queries, we employ the following structured

language template: “Based on the current vehicle assignment, is it
expected that [passenger number] will be [action] [time]?”, where
the action can be either dropped off or picked up, and time corre-
sponds to either late or early. For the example query, we decompose
the template-based query into the following tuple: [passenger 1, drop
off, late]. As shown in Table 1, the specification type for this factual
query is “Efficiency”, and the queried state variable is “drop off” or
tq. Thus, the corresponding CTL formula regarding efficiency would
be 1 1 AG (test < (ta + taowed)), Where the variable ¢ represents
the estimated time required for dropping off passenger 1. The CTL
operator AG checks for all states and all future paths starting from
the root. The relation < in the formula is used to determine whether
passenger 1 will arrive late, based on the comparison of the estimated
travel time with the allowed time window.

Contrastive Queries — “Why Not?”  The second type of query in
our explainer involves alternative plans specified by technical users.
In this case, we aim to explain why the planning algorithm did not
recommend the alternative action a; as proposed by the user. We
formulate the type of user queries about alternative plans with the
following language template: “Why wasn’t [passenger] assigned to
[another vehicle] located at [location]?”, where the missing variables
can be represented as [passenger, another vehicle, location]. For ex-
ample, a common query is “Why wasn’t passenger 1 assigned to
vehicle 1 (which is closer)?” In line with the nature of contrastive
queries, the evaluation criteria for this query involve asking about
potential violations of hard constraints and efficiency. More pre-
cisely, when querying about an alternative action a;, we can pro-
vide two types of reasons why MCTS did not produce aj. First,
a} could be infeasible due to violations of hard constraints. Sec-
ond, a; could be less efficient than the near-optimal solution a; gen-
erated by MCTS. This evaluation includes several CTL formulas:
@1 AG, (tex < (tp + ta)), which examines efficiency in pickup
times; ¢2 : AG, (tex < (ta + ta)), which addresses efficiency in
drop-off times; and ¢3 : AG, (vo < v.), which checks for violations
of capacity constraints. Initially, the search tree nodes are checked
against these hard constraints. If no violations are found, the effi-
ciency formulas are then evaluated.

Queries with Tree Expansion — “What If?” MCTS focuses on
exploring the most promising paths, intentionally leading to less ex-
ploration of other, lower-scoring branches. Therefore, while extract-
ing information from the search tree suffices for explaining recom-
mended plans, it can provide limited insights for alternative plans,
which might not have been explored enough [6]. For example, con-
sider a user querying about an alternative action, such as assigning
request 1 to vehicle 2 in Figure 1. In this case, while there are no
direct violations, the user might question whether the algorithm con-
siders the action less optimal due to insufficient exploration depth.
To accommodate such queries, the MCTS explainer enables users to
query about a broader set of potential actions that were neither rec-
ommended nor sufficiently explored. We formulate them as “Can you
tell me more about assigning the [passenger] to [another vehicle] 7.
For instance, a user may ask, “Can you tell me more about assign-
ing passenger 1 to vehicle 2?” In this format, the free variables are
encapsulated in the tuple: [passenger 1, vehicle 2]. This query type
requires additional search and exploration to provide comprehensive
explanations [7], as illustrated in Figure 4. A pseudocode of this pro-
cess is provided in Appendix Al'. At a high level, to address such
queries, we locate the under-explored node N (s, a) in the original
tree, where q is the alternative action being queried and s is the state

1 Appendix available at https://arxiv.org/pdf/2407.10820.



Algorithm 1 CTL-based Explainable MCTS

Algorithm 2 ExpGen: Generate Explanations for One Query

1: for each decision epoch do
2 se=(0e,r, Vi {RITD)

/* calculate route plan with MCTS */
3:  at =MCTS(st)

4:  Obtain user queries Q: = {q1,q2, - }
/* process user queries «*/

5. forg; € Q. do

6: o+ {}, 2« {}

7: Identify specification type from query type

8: ® <« specification_type(q;), query_variable(g;)
9: Calculate results: e; = ExpGen(;); V¢; € @
10: Append each ¢; to Z; output =
11:  end for
12:  Apply a: to route 0
13: end for

in the query. We then create a sub-tree by designating the previous
path as the parent node and execute MCTS, continuing to explore
possible scenarios and outcomes in response to the query.

3.4 Generating Natural Language Explanations

As outlined in Algorithm 1, the explainer is invoked once at the end
of each decision epoch if there are user queries. Following the steps
specified in Algorithm 2, the CTL-based explainer checks the search
tree against each formula upon formulating the set of CTL formu-
las ®. Each explanation in = is obtained through CTL specification
checking and quantitative evaluation. Specifically, at line 10 of Algo-
rithm 2, we derive two key quantitative insights from the aggregated
list of violations across all expanded nodes within the MCTS tree.
First, we compute the violation percentage and the average degree of
these violations. Second, for timing-related violations, we compute
the temporal range of these violations, identifying both the earliest
(lower bound) and latest (upper bound) occurrences. These results
are then translated into a set of natural language explanations, de-
noted as = = {e1, &2, - }. The details of language templates are
provided in Appendix A2.6. An example of these templates to ad-
dress the query in the running example is: “Based on the set of sce-
narios examined by MCTS, there’s a chance that the passenger might
encounter a delay in their drop-off time. This expected delay aver-
ages around [23 minutes]. The primary reason for this delay is that
the proposed vehicle is expected to make stops at about [4 other lo-
cations] prior to reaching the passenger’s drop-off point. However,
the delay can be as short as [19 minutes] or extend up to [27 min-
utes]. The percentage of times the suggested vehicle doesn’t meet
the desired drop-off time is about [10%].”

4 Evaluation

We evaluate the effectiveness of the explanations generated by our
explainable framework in the context of five distinct vehicle routing
scenarios [42]. through an IRB-approved user study. We aim to as-
sess the overall quality and user-friendliness of the natural language
explanations from the perspective of end users, comparing them with
two other baseline methods. Additionally, the study aims to under-
stand the participants’ preferences among three types of queries.

4.1 Study Design

Testing Environment.  Participants in this questionnaire-based
user study first receive a comprehensive overview of the paratransit

1: Obtain ¢
2: Initialize € using explanation templates
3: Initialize potential violations vio < {}
4: for each child node n = (s, N, Q) in MCTS tree do
5. ifnk ¢ then
6: Add ¢ to potential violations vio
7:  endif
8: end for
9: if violations vto are not empty then
10:  Calculate explanations for vio and apply to templated €
11: end if
12: return

problem, which is designed to familiarize them with the key con-
cepts. Then, participants are presented with five different scenarios
of the route-planning problem. Each scenario involves different con-
ditions and variables relevant to the problem, simulating real-world
traffic planning situations. In the next step, the decision computed by
the MCTS planning algorithm is shown to the participants. Finally,
participants review three types of MCTS explanations regarding this
decision. For each type of explanation, participants are asked to rate
their quality using a pre-defined questionnaire. For all questions that
require a rating, participants will be prompted to give their assess-
ment using a 5-point Likert scale, where a rating of 1 is strongly
disagree and a rating of 5 is strongly agree. Illustrative examples of
the questionnaire is shown in Appendix A2.5.

Participants. The complete details and statistics of the participants
were provided in Appendix A2.2. We recruited a total number of 82
eligible participants. Among the participating clients, 40.3% of the
participants reported having no knowledge of the MCTS algorithm,
while 32.8% indicated they have a basic understanding. The remain-
ing 26.9% of participants are either very familiar with the algorithm
or have hands-on experience with MCTS.

4.2  Explanations Quality Assessment

Evaluation Metrics. We designed the questionnaire following the
explainable artificial intelligence metrics proposed by Hoffman et
al. [20]. Specifically, our questions evaluate the following four cri-
teria: (1) Understandability: I understand this explanation of the
planning algorithm result. (2) Satisfaction: This explanation of the
planning result is satisfying. (3) Completeness: This explanation of
the planning result seems complete. (4) Reliability: This explanation
helps me to assess the reliability of the planning algorithm.

Baselines. Our method is benchmarked against two baselines. The
first baseline is designed to represent the information typically dis-
played in current route dispatching interfaces, while the second fo-
cuses on the states, actions, and scores stored within the MCTS
search tree. Baseline (1): A map visualization that integrates passen-
ger and vehicle locations, with indications of rule violations. Base-
line (2): A detailed visualization depicting the states, actions, and
scores within the search tree.

Assessment on explanation quality by query type. We assess the
effectiveness of each query type using the following questions [20]:
(1) Detail: This explanation of the planning result has sufficient de-
tail. (2) Irrelevance: This explanation of the planning result contains
irrelevant details. (3) Accuracy: This explanation says how accurate
the planning algorithm is. The second assessment question focuses
on the irrelevance of the information presented in the explanations.



Table 2. Performance of the explanation framework for different query types across five scenarios.

All Scenarios Scenario 1

Scenario 2

Scenario 3 Scenario 4 Scenario 5

Query Type | Det. Irr. Acc. | Det. Irr. Acc. | Det. Irr

Acc. | Det. Irr. Acc. | Det. Irr. Acc. | Det. Irr. Acc

Factual
Queries

433 240 396 | 439 239 399 | 429 2.62

402 | 407 211 343 | 428 212 4.03 | 413 252 3.66

Contrastive

4.28
Queries

250 398 | 443 242 411 | 440 279

396 | 454 236 426 | 414 241 392 | 435 275 4.01

Tree

. 4.35
Expansions

264 4.08 | 429 265 417 | 415 2.69

406 | 395 233 3.69 | 411 261 395 | 439 274 413
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Likert Rating
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Figure 5. Comparative analysis across five scenarios (S1-S5). Left bars
represent baseline 1 with map visualization; middle bars represent baseline 2
with search tree visualization; and right bars represent the proposed
approach. Plot (a) displays the aggregated results across all scenarios.

Therefore, in our evaluation metrics, for the categories of detail and
accuracy, a higher score correlates with a better explanation. In con-
trast, for the category of irrelevance, a lower score is more desirable,
suggesting that the explanations are concise.

User preferences by technical background. Route dispatchers,
despite their knowledge in the paratransit domain, generally lack
technical expertise in MCTS. Consequently, to assess the effective-
ness of our explanations for both non-technical and technical users,
we divided the participant population based on their technical back-
ground and familiarity with MCTS. Individuals with no knowledge
about the algorithm are considered non-technical users; the rest are
technical users. In the left plot of Figure 6, we present the user rat-
ings of three baselines as evaluated by non-technical users, where
left bars (green) represent baseline 1, middle bars (yellow) represent
baseline 2, and right bars (deep blue) represent our explanations. The
right plot of Figure 6 showcases the feedback from technical users.

4.3  Result Analysis

Comparison of CTL-based explainable MCTS with baselines.
In Figure 5, we present a comparative evaluation and analysis across
all scenarios. Particularly, subplot (a) aggregates and averages the
Likert ratings for each criterion across the five scenarios. This result
shows that, on average, our explanations outperformed both baselines
in all four evaluation criteria. While participants considered baseline
1 with map visualization as more understandable and satisfying than
baseline 2 with search tree visualization, the results show that the nat-
ural language-based explanations of our approach were superior in
terms of understandability, satisfaction, and completeness. Further-
more, these explanations were most effective in helping participants
to assess the reliability of the route planning algorithm. Although ap-
proximately 60% of the participants have a basic or higher level of
understanding of the MCTS algorithm, our proposed approach sig-
nificantly outperformed the search tree visualization baseline in all
four evaluation criteria. This performance improvement can be ob-
served even with a technically informed participant group. Subplots
(b)-(f) in Figure 5 showcase the results for each individual scenario.
Our proposed method outperforms the other two baseline approaches
across all evaluation criteria in all scenarios. Among these criteria,
the most significant improvement offered by our method is in aiding
participants to evaluate the reliability of the MCTS route planning
algorithm. This improvement is likely attributable to the comprehen-
sive level of detail provided by our method, as further shown by the
subsequent evaluations focusing on each type of query.

Evaluation of each query type. In Table 2, we present the av-
erage Likert ratings for three key evaluation criteria across all five
scenarios. Note that in assessing irrelevance, a lower rating is more
favorable. Across all five scenarios, the result reveals that contrastive
queries are considered as having the most sufficient detail, particu-
larly in explaining why certain requests were not assigned to a ve-
hicle. Moreover, participants rated the factual queries as the most
relevant, highlighting their ability to convey essential information
without including unnecessary details. About the evaluation of the
accuracy of the MCTS algorithm, participants showed a preference
for queries that require tree expansion. This preference suggests that
they find the information through additional search, beyond what is
available in the original search tree, is helpful in further understand-
ing the accuracy of MCTS.

User preferences by technical background. Data in these figures
reveal that our explainer received higher ratings across all four eval-
uation criteria from both user groups. Notably, the advantage of our
explainer is more pronounced in the feedback from non-technical
users, indicating its effectiveness and adaptability in meeting the
needs of users with little to no technical expertise.
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Figure 6. User preferences based on technical background
4.4 Discussion

Learning curve. In Figure 5, we observe that the performance gap
between our proposed method and the two baseline methods widens
progressively from scenario 1 to scenario 5. This could be attributed
to participants experiencing a learning curve in using our system
and gaining increased familiarity with the route planning task. Ini-
tially, the map visualization might seem adequate for understanding
why a particular request is assigned to a vehicle, especially for non-
technical users. However, as participants look deeper into the more
detailed natural language explanations provided by our explainer,
they begin to understand more about the complexity of the scenar-
ios, which is often more complicated than initially perceived. The in-
creasing complexity of the scenarios, especially in the last two tasks
where the number of paratransit vehicles grows, likely further em-
phasizes the superiority of our proposed method over the map visu-
alization. Interestingly, we observe that participants’ comprehension
of the search tree visualization does not show marked improvement
with increased exposure. This insight underscores the need for ex-
planations that can adapt to the complexity of the scenario and the
user’s growing understanding.

Additional feedback. @ We included additional open-ended ques-
tions at the end of the survey. One participant positively highlighted
our proposed system, stating that it “provides me more useful in-
formation on how to interpret what the algorithm is doing.” This
feedback emphasizes the effectiveness of our system in enhancing
user comprehension of the algorithm’s processes. Several partici-
pants highlighted the effectiveness of our explainer in clarifying the
routing decisions in scenario 5, particularly why the closer vehicle
with ID 1 was not chosen, while a more distant vehicle with ID 3
was assigned instead. For instance, one participant remarked, “I like
the solution that was given this time; it clearly explains that vehicle 3
should be taken over vehicle 1.” These comments underscore the ex-
plainer’s ability to provide reasons behind complex decision-making
processes in a comprehensible way.

5 Related Work

Explainable Al research has its roots in the need to comprehend,
trust, and enhance Al algorithms [5]. Recent studies have highlighted
the importance of assisting human users in comprehending and trust-
ing the decisions made by a wide range of models such as regression
trees and neural networks (e.g. [16, 18, 4, 30, 3, 27, 41]). Our ap-
proach is situated within the broader context of prior research cen-
tered on explaining plans and decisions generated by computer algo-
rithms. While there is currently no comprehensive taxonomy for this
research domain, we can broadly categorize these efforts as follows.

The first category is related to result-oriented explanations, where
the objective of explainability algorithms is to reveal the rationale be-

hind a specific decision post hoc by considering the attributes of that
decision. Previous work, such as Langley [24], discusses the desired
behaviors of post-hoc explainability modules at a high level, encom-
passing features like explaining the objectives of the planning task
and presenting alternative plans. A comprehensive survey, Sreedha-
ran et al. [39], formally defines distinct primary considerations of
explainability systems. These considerations are roughly categorized
based on the intended audience (the “explainee”) and the nature of
the planning results, which can encompass plans or policies. Further-
more, Fox et al. [17] identifies four key types of questions that should
be addressed by an explanation system. They illustrate the practical
application of the system with two examples, demonstrating how it
should function in practice. Nonetheless, the majority of these pa-
pers discuss post-hoc explainability systems in a general manner.
They often lack specific examples and use cases that showcase ex-
planations in action. Thus, the development of meaningful solutions
motivated by real-world problems remains a significant challenge.
In contrast, our work is the first to develop an explanation frame-
work for a public transportation-related planning system in the real
world, and evaluates the system with human users. The second cate-
gory aims to generate explanations that are included as a sub-goal
of the planning algorithm. For instance, the explainability feature
may influence the planning process, where the objective is to also
account for system interactions with other system components [40].
Chakraborti et al. [11] views the planning problem as a system with
two components: the first component is the Al algorithm, and the
second component is the human agent. The goal of the Al algorithm
is not to make decisions but to provide suggestions to the human.
Similar approaches can also be found in the field of multi-agent rein-
forcement learning (MARL). Boggess et al. [9] focuses on explaining
MARL policies by providing policy summaries in natural language.
To ensure comprehensive explanations for user queries, their system
conducts additional guided rollouts of the policy to generate infor-
mative explanations. Our work shares similar practices in providing
explanations for under-explored tree branches with the help of addi-
tional computation. However, our approach not only generates more
fine-grained explanations leveraging CTL and quantitative evalua-
tions, but also derives explanations from the search tree of an online
planner as opposed to a fixed RL policy.

6 Conclusions

We present a CTL-based explainer specifically designed for the
MCTS algorithm, focusing on the paratransit route planning appli-
cation. Our explainer classifies user queries into three categories:
factual queries, contrastive queries, and queries requiring path expla-
nations. It then dynamically generates CTL formulas based on the
free variables, the type of query and its specifications. After check-
ing different branches of the existing MCTS search tree or even the
results of newly initiated searches, the explainer converts the out-
comes of its specification verification into natural language explana-
tions with the help of language templates. This approach is designed
to enhance the usability of the system for both technical and non-
technical audiences. The effectiveness of our method is evidenced
by a user study involving 82 participants, which shows notable im-
provements in user comprehension and satisfaction compared to two
baseline methods. We believe that our explainer is versatile enough
to be seamlessly adapted to other MCTS implementations in various
application fields, broadening its potential for impact.
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